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Abstract

This dissertation analyzes the system efficiencies (multiplicative losses) of a digital

holography (DH) system for tactical applications and is comprised of four unique

contributions. For the first contribution, the performance of DH in the on-axis phase

shifting recording geometry is compared to a similar, well-studied wavefront sensor

for deep turbulence, the self-referencing interferometer (SRI), which has known ef-

ficiency losses. Wave-optics simulations with deep-turbulence conditions and noise

were conducted and the results show that DH outperforms the SRI by 10’s of dB due

to DH’s strong reference beam. In the second contribution, an experiment with DH

in the off-axis image plane recording geometry was conducted with a continuous-wave

laser with near-ideal laser coherence to quantity the major system efficiencies. The

experimental results show that the mixing efficiency (37%) is the dominant efficiency

loss; however, excess reference (75%) and signal noise (3%-100%) are significant ef-

ficiency losses as well. For the third contribution, additional experiments show that

the the mixing efficiency depends on the coherence efficiency of the master oscillator

(MO) laser, which degrades with range. Here, the MO laser was phase modulated to

represent multi-longitudinal mode operation and rapid-frequency fluctuations. The

experimental results show that DH effectively measures the coherence efficiency to

within 3.2% from the spectral models for both effects. Since the MO laser spec-

trum is related to the coherence efficiency, the losses as a function of range can be

well determined from the MO laser spectrum. Finally, in the fourth contribution,

further experiments showed that if the MO laser has significant low frequency laser

frequency noise, the coherence efficiency can be increased by decreasing the hologram

measurement time (from 100 ms to 100µs), thus filtering the laser frequency noise

iv
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and increasing the effective range by 280%. Altogether, the results from these four

contributions provide the framework to estimate the major system losses for design-

ing a tactical DH system and have been or will be published in peer-reviewed journal

articles.
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DIGITAL HOLOGRAPHY EFFICIENCY EXPERIMENTS FOR TACTICAL

APPLICATIONS

I. Introduction

In the late 1960’s, Goodman, Gaskill, and others paved the way for using holog-

raphy for wavefront sensing for tactical applications [1, 2, 3, 4]. Since then, digital

holography (DH) has been well studied for a variety of applications like microscopy

[5, 6] and optical coherence tomography [7, 8], which typically involve table-top sys-

tems in controlled environments. On the other hand, military tactical applications

like wavefront sensing [9], long-range imaging [10], and 3D imaging [11] involve long

propagation paths through the atmosphere. For these tactical applications, DH of-

fers distinct advantages over direct-detection methods, since it provides access to the

complex-optical field (i.e., both the amplitude and phase) and enables increased sen-

sitivity due to coherent detection with a strong reference.

When light propagates through the Earths atmosphere, small temperature dif-

ferences lead to tiny refractive-index differences that cause aberrations known as

optical turbulence. Traditional adaptive optics (AO) systems attempt to sense and

correct for these aberrations and achieve near-diffraction-limited performance given

weak-turbulence conditions [12]. With weak-turbulence conditions, constructive and

destructive interference known as scintillation is negligible and the optical system is

isoplanatic [i.e., a single phase estimate corrects the entire field of view (FOV)]. How-

ever, under deep-turbulence conditions, also called distributed-volume turbulence, the

scintillation becomes appreciable with total-destructive interference. This outcome

causes branch points and cuts to arise in the phase function and the aberrations be-
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come anisoplanatic (i.e., multiple phase estimates are needed to correct the entire

FOV). These effects cause traditional AO system performance to quickly degrade.

Along with scintillation from long atmospheric paths, the light also experiences

extinction (i.e., absorption and scattering). Both of these effects lead to weak signals.

For direct detection systems, like those used in traditional AO systems, the measured

signal must be above the system’s noise floor to achieve the detection threshold. Since

DH uses coherent detection, the signal light is interfered with a reference light source.

When a strong reference is used, this interference boosts the weak signal above the

system’s noise floor and enables increased sensitivity due to coherent detection with

a strong reference (as previously mentioned).

Additionally, DH provides other distinct benefits for tactical applications. The

branch points, which arise from nulls in the real and imaginary parts of the complex-

optical field, cause traditional AO systems to fail [13]. This failure is the result of the

inability to both sense and correct for the branch points and associated branch cuts,

which are 2π discontinuities in the phase function. With that said, the wrapped-phase

function provided by DH directly contains these branch points and branch cuts; thus,

DH can be used to overcome their effects.

Lastly, traditional AO systems cannot resolve anisoplanatism with the use of a

single phase-function estimate and correction. Since DH estimates and corrects the

phase function digitally, multi-plane algorithms can be used. [14, 15, 16, 17]. These

multi-plane algorithms enable enhanced performance when in the presence of aniso-

planatism without the use of additional hardware.

With the above benefits in mind, the performance of DH can be characterized

using the signal-to-noise ratio (SNR). Naturally, the strong reference of DH enables

increased sensitivity and can preform well in weak signal environments like those

given with deep-turbulence conditions. However, there are phenomenon that reduce
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the SNR and therefore reduce performance. These phenomenon can be characterized

as system efficiencies or multiplicative losses to the SNR. Some phenomenon, like the

detector quantum efficiency, can be viewed as a constant and independent DH sys-

tem operation. Other phenomenon, like coherence, can be dynamic, and dependent

on non-ideal hardware performance and DH system operation. To fully comprehend

the performance capabilities and limits of a DH system for tactical applications, an

understanding of the major DH system efficiencies is required.

Past efforts have explored the use of DH for tactical applications. With that

said, many hologram recording geometries exist for DH and each recording geometry

has different considerations depending on the application [18, 19]. In particular, the

off-axis image plane and pupil plane recording geometries have been studied for the

deep-turbulence wavefront sensing using modeling and simulation [20, 21]. Addition-

ally, field tests have been conducted at ranges of 100 m and 1.5 km [10, 22]. Their

results focus on the phase error estimation and correction, but lack details on the DH

system hardware and performance, which gives rise to the purpose of this dissertation

effort.

The overall goal of this dissertation is to analyze the system efficiencies (multi-

plicative losses) associated with a DH system for tactical applications. With the above

introductory comments in mind, this dissertation proceeds in the following manner.

Chapter II provides the background information on DH, turbulence, and temporal

coherence. Then, the individual contributions are presented in the following Chap-

ters:

Chapter III: The performance of the on-axis phase shifting recording geometry

of DH is analyzed and compared to the self-reference interferometer

using wave-optics simulations with deep-turbulence conditions and

noise.
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Chapter IV: DH efficiency experiments are conducted to quantify the major sys-

tem efficiencies with excess noise.

Chapter V: The coherence efficiency of DH is experimentally measured and com-

pared to the spectrum of a multi-mode and linewidth-broaden MO

laser.

Chapter VI: The mixing efficiency is fully characterized to account for vibrational

and coherence effects and shows the coherence efficiency at range is

inversely proportional to the hologram integration time.

Lastly, the conclusions are summarized in Chapter VII with recommendations for

future work.
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II. Background

This chapter provides the background material for the contributions presented in

Ch. III - VI. First, the fundamentals of digital holography in the off-axis image plane

recording geometry (IPRG) is discussed. Then, the optical characteristics of turbu-

lence and conditions for deep turbulence is presented. Lastly, temporal coherence

theory is discussed with respect to DH.

2.1 Digital holography in the off-axis image plane recording geometry

Pupil

Illuminator

Object

MO

FPA

LO

Signal

Refer
enc

e

Figure 2.1. Optical setup of DH in the off-axis image plane recording geometry (IPRG)

Figure 2.1 illustrates the optical setup of DH in the off-axis image plane recording

geometry (IPRG). The master oscillator (MO) laser is split into two paths: the illu-

minator to flood illuminate the imaged object and a local oscillator (LO) to provide

the reference light. The scattered light from the object becomes the signal light and

is imaged onto the focal plane array (FPA) by the receiver pupil lens. At the FPA,

the signal is interfered with the reference to create the hologram. The interference

produces spatial fringes in the hologram, which is demodulated to gain access to the

signal complex-optical field. The ensuing sections mathematically describe the holo-

gram detection and noise, how the signal complex-optical field is estimated, and then
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formulates the signal-to-noise ratio. The definitions of the special functions used in

this section can be found in App. A. Further details can be found in the Encyclopedia

of Modern Optics II article on“Spatial Heterodyne” by Spencer [23].

2.1.1 Hologram Detection and Noise

Using the Fresnel approximation for a tilted spherical wave, the complex-optical

field of the reference, UR, is described as

UR(x, y) =AR e
j2πzI/λ exp

[
j
π

λzI

(
x2 + y2

)]

exp

[
j2πxR

x

λzI

]
exp

[
j2πyR

y

λzI

]
,

(2.1)

where (x, y) are the FPA coordinates, AR is a complex constant, zI is the image

distance, λ is the MO wavelength, and (xR, yR) are the pupil coordinates at the

injection of the reference light. Note that AR is a complex constant assuming uniform

illumination of the FPA. At the FPA, the signal and reference light interfere and

produces the hologram irradiance, iH . In units of W/m2,

iH (x, y) = |US (x, y) + UR (x, y)|2

= |US (x, y)|2 + |UR (x, y)|2

+ |US (x, y)U∗R (x, y)|

+ |U∗S (x, y)UR (x, y)| ,

(2.2)

where US is the signal complex-optical field and ∗ denotes complex conjugate. Here,

the hologram irradiance is spatially continuous and is real valued. The absolute value

of the third and forth terms eliminates residual phase.

Note that the signal incurs optical losses upon reaching the FPA, which is rep-

resented by the transmission efficiency, ηt. Additionally, the signal is often assumed
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to 100% depolarized due to the rough-surface scattering of the a dielectric object.

Since the reference light is 100% polarized, the magnitude of the third and fourth

interference terms of Eq. (2.2) is decreased by 50% of the signal irradiance or 70.7%

of the signal field amplitude, which is represented by the polarization efficiency, ηp.

The inclusion of these factors into Eq. (2.2) gives

iH (x, y) = ηt |US (x, y)|2 + |UR (x, y)|2

+
√
ηtηp |US (x, y)U∗R (x, y)|

+
√
ηtηp |U∗S (x, y)UR (x, y)| .

(2.3)

Also note that losses due to temporal coherence between the signal and reference are

neglected. This effect is discussed in detail in Ch. 2.3.

The FPA records the hologram on an M ×N rectangular array of square pixels of

width p (assuming 100% pixel fill factor). The recording of the continuous hologram is

described as a 2D-convolution of the hologram irradiance with a 2D-rectangle function

(representing the spatial-pixel averaging) [24]:

îH (x′, y′) =
1

p2

[
iH (x′, y′) ∗ ∗ rect

(
x′

p
,
y′

p

)]
, (2.4)

where îH is the pixel-averaged hologram irradiance in units of W/m2, (x′, y′) is the

sampled hologram plane coordinates, and ∗∗ denotes a 2D-convolution. Here, x′ = np

and y′ = mp where n = −N
2
. . . , N

2
− 1 and m = −M

2
, . . . , M

2
− 1 for even M and N .

However from hereon, we refer to sample coordinates without the accent. The FPA

converts the random arrival of photons to electrons over an integration time, ti. The

sampled mean number of hologram photoelectrons (pe), mH , is

mH (x, y) = ηq
tip

2

hν
îH (x, y) , (2.5)
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where ηq is the FPA quantum efficiency, h is Planck’s constant, and ν is the MO laser

frequency [25]. Similarly, a the mean number of signal photoelectrons, mS, is

mS (x, y) = ηq
tip

2

hν
|U(x, y)|2 (2.6)

and the mean number of reference photoelectrons, mR, is

mR = ηq
tip

2

hν
|AR|2 . (2.7)

Again, we assume a spatially uniform reference light and mR is independent of pixel

location. Note that Eq. (2.5) - (2.7) do not contain noise.

The strong-reference assumption enables DH detection at the shot noise limit and

drives the development of the noise model. Our noise model is Gaussian and additive,

and as such,

m+
H (x, y) = mH (x, y) + σnnk (x, y) , (2.8)

where m+
H (x, y) is the mean hologram photoelectron count with noise, σn is the

noise standard deviation, and nk(x, y) is the kth realization of real-valued, zero-mean,

unit-variance Gaussian random numbers. To achieve a strong reference, we set the

reference strength to fill the pixel-well depth, such that the hologram noise is refer-

ence shot noise dominate, but pixel saturation is avoided. Shot noise has a Poisson

distribution, but can be approximated as a Gaussian distribution when mH � 1.

Also, it is independent of the FPA read noise, so the total noise becomes

σ2
n (x, y) = mH (x, y) + σ2

r , (2.9)

where σ2
n (x, y) is the total noise variance, mH (x, y) is the hologram shot-noise vari-

ance, and σ2
r is the read-noise variance, all in units of pe2. Often with the strong-
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reference approximation, mH ≈ mR and mR � σ2
r , so the only noise contribution

considered is the reference shot noise. However, there are cases where other sources

of shot noise must be accounted.

The FPA digitizes the photoelectrons to discrete values, dH , with units of DN

[26]. The digitization is described with additive quantization noise [27] as

d+
H (x, y) = gA/Dm

+
H (x, y) + σquk (x, y) , (2.10)

where d+
H (x, y) is the mean hologram digital number with noise, gA/D is the analog-to-

digital gain (DN/pe), σq is the quantization-noise standard deviation, and uk (x, y) is

real-valued, zero-mean, random numbers from -0.5 to 0.5 with a uniform distribution.

The quantization-noise variance is

σ2
q =

LSB2

12
, (2.11)

where LSB is the least-significant bit. In most cases, the quantization noise is neg-

ligible, especially for high bit depths (e.g. 14-bit), therefore it is neglected in the

ensuing development. Additionally, other noise sources exist [28, 26], but are also

typically negligible.

2.1.2 Hologram Demodulation

In the hologram, the reference spatially modulates the signal. This encodes the

signal light in the hologram and the demodulation process provides access to the

signal complex-optical field. Since the image and pupil planes are Fourier transform

pairs [29], the Fourier transform of the hologram provides access the signal complex-

optical field in the pupil. The hologram is recorded in an image plane, so the discrete
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Hologram Grid
(x, y)

p

Np

F−1{·}

Fourier Plane Grid
(fx, fy)

1
Np

1
p

Figure 2.2. Spatial sampling between the recorded hologram and Fourier plane on a
square grid (i.e., M = N).

inverse Fourier transform, DFT −1, is operated on d+
H(n,m) to arrive at

DFT −1
{
d+
H (x, y)

}
=D+

H (fx, fy)

=gA/Dηq
ti
hν
DFT −1 {iH (x, y)} sinc (p fx, p fy)

+ gA/D
σn√

2
Nk (fx, fy) ,

(2.12)

where Nk is the kth realization of circular-complex Gaussian random numbers with

zero-mean and unit-variance for both the real and imaginary components (hence the
√

2 factor) and (fx, fy) are the sampled Fourier plane coordinates. As illustrated in

Fig. 2.2, the Fourier plane is represented in image-plane spatial-frequency coordi-

nates, fx = n
N

and fy = m
M

in units of 1/p or per pixel. Additionally, the 2D-sinc

appears from the rect convolution in Eq. (2.4).

Then, the DFT −1 of the hologram irradiance is evaluated as

DFT −1 {iH (x, y)} = |AR|2 δ (fx, fy)

+ ηtŨS (fx, fy) ∗ ∗Ũ∗S (fx, fy)

+
√
ηtηpA

∗
RŨS

(
fx −

xR
λzI

, fy −
yR
λzI

)

−√ηtηpARŨ∗S
(
fx +

xR
λzI

, fy +
yR
λzI

)
,

(2.13)
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Figure 2.3. An illustration of the demodulation process of a point source without noise

where δ is the impulse function and ŨS is the Fourier transform of US. The Fourier

plane in Fig. 2.3 illustrates these four terms. The first term is the result of the

spatially uniform reference light which resides in the center the Fourier plane. The

second term is the autocorrelation of the signal complex-optical field in the pupil

plane, which results in a weak chat function (cf. App. A). The third term is the

signal complex-optical field in the pupil plane, ŨS, scaled by A∗R, and centered at
(
xR
λzI
, yR
λzI

)
. It is spatially shifted away from DC due to the tilt of off-axis reference

light and the shifting property of the Fourier transform. The fourth term is conjugate

of the third term, which arises from the Hermitian symmetry of the Fourier transform

for real-valued functions.

To isolate ŨS, a digital window is used as described as

w (fx, fy) = circ (2fx qI , 2fy qI) , (2.14)

where circ is the circle function (cf. App. A) and qI is the image-plane sampling

quotient. The image-plane sampling quotient is defined as

qI =
λzI
pdp

, (2.15)

where dp is the pupil diameter. qI has various physical descriptions, but the most

applicable here, is qI corresponds to the number of pupil widths across the Fourier

11



www.manaraa.com

plane. Therefore, typical values range from qI = 2.5 − 3.

Next,
̂̃
US is obtained by shifting the Fourier plane and applying our window

w (fx, fy) as

̂̃
US (fx, fy) =w (fx, fy)D

+
H

(
fx +

xR
λzI

, fy +
yR
λzI

)

=gA/Dηq
√
ηtηpηs

tip
2

hν
A∗RŨS (fx, fy)

+ gA/D
σI√

2
Nk (fx, fy) ,

(2.16)

where σ2
I is the compressed-noise variance for the off-axis IPRG (σ2

I = π
4q2I
σ2
n) and ηs is

the spatial integration efficiency. Note that the factor of π
4q2I

is the ratio of windowed

area to the total Fourier plane area. ηs is added to account for the pixel integration

in Eq. (2.4), which results in the 2D-sinc function in the Fourier plane,

ηs =

〈
w (fx, fy) sinc2

(
p

[
fx +

xR
λzI

]
, p

[
fy +

yR
λzI

])〉
, (2.17)

where 〈·〉 is the spatial average. Depending on pupil size and location, typical values

are ≈ 64% for a qi = 2 and a pupil centered at (p/4, p/4) in the Fourier plane. Note

that the sinc is the approximation of the pixel modulation transfer function (MTF).

Lastly, to obtain the estimated-signal complex-optical field, ÛS, a discrete Fourier

transform, DFT , is performed on
̂̃
US to arrive at

ÛS (x, y) =DFT
{
ÛP (fx, fy)

}

=gA/Dηq
√
ηtηpηs

tip
2

hν
A∗RUS (x, y)

+ gA/D
σI(x, y)√

2
Nk (x, y)

(2.18)

which is in units of DN . Note that the grid dimensions do not change between planes

to preserve the energy per unit area.
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2.1.3 Signal-to-Noise Ratio

The power definition of the signal-to-noise ratio, S/N , is used, such that

S/N (x, y) =

E
{∣∣∣ÛS (x, y)

∣∣∣
2
}

V
{
ÛS (x, y)

} , (2.19)

where E{·} is the expectation operator and V{·} is the variance operator. Using Eq.

(2.6), (2.7), and (2.18), the signal magnitude-squared expectation value becomes

E
{∣∣∣ÛS (x, y)

∣∣∣
2
}

= g2
A/Dηtηsηpη

2
q mS (x, y)mR. (2.20)

The variance is the noise of Eq. (2.18) and becomes

V
{
ÛS (x, y)

}
= g2

A/D

π

4q2
I

σ2
n (x, y) . (2.21)

Combining Eq. (2.9) into Eq. (2.21), the SNR becomes

S/N (x, y) = ηT
4q2
I

π

mS (x, y)mR

mR +mS (x, y) + σ̀2
r

, (2.22)

where ηT is the total efficiency and σ̀2
r = σ2

r/ηq. With the strong reference assumption,

mR � ms(x, y) and mR � σ̀2
r , S/N reduces to

S/N (x, y) ≈ ηT
4q2
I

π
mS (x, y) , (2.23)

which means the SNR is only dependent on the signal strength. With the efficiencies

present here, the total system efficiency becomes

ηT = ηsηpηtηq. (2.24)

13
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2.2 Optical Turbulence

Optical turbulence in the earth’s atmosphere generates eddies, which have varying

refractive indices, and in turn, induces aberrations along the optical path because

the light rays travel slightly different paths. Andrei Kolmogorov was the first to

statistically describe the spectrum of the eddy sizes [30] and from that, optical metrics

for the turbulence-induced distortions were developed by Fried [31, 32] and others.

Three optical metrics of concern are the Fried parameter or coherence length (r0), log-

amplitude variance or Rytov number (σ2
χ), and isoplanatic angle (θ0). The following

equations [33, 34] show how these parameters scale with wavelength (λ), turbulence

strength (C2
n), along the optical path (z), and range (L):

r0 =

[
0.423k2

∫ L

0

C2
n (z)

( z
L

)5/3

dz

]−3/5

, (2.25)

σ2
χ = 0.563k7/6

∫ L

0

C2
n (z)

( z
L

)5/6

(L− z)5/6 dz, (2.26)

θ0 =

[
2.91k2

∫ L

0

C2
n (z) (L− z)5/3 dz

]−3/5

, (2.27)

where C2
n is refractive index turbulence structure constant (e.g. strength of turbu-

lence), k is the wave number given by 2π
λ

, and L is the total distance of the optical

path. Note that Eq. 2.25-2.27 are for a spherical wave.

2.2.1 Fried’s coherence length r0

Fried’s coherence length is the resolution limiting aperture size. If r0 = 10 cm,

then the imaging system has the effective resolution as a 10 cm aperture and a larger

aperture doesn’t improve resolution. As shown in Eq. (2.25), r0 is proportional to

wavelength, r0 ∝ λ6/5, e.g. the longer the wavelength, the better the r0. It is also

distance dependent, and therefore, weak turbulence over a long path can yield a small
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r0. In terms of adaptive optics correction, if the aperture diameter (dp) is less than

four times r0, only low-order correction is required, e.g. tip and tilt. For dp/r0 > 4,

then higher order correction is needed, e.g. with something like a deformable mirror.

2.2.2 Rytov number σ2
χ

The Rytov number is the log-amplitude variance which quantifies the amount

of scintillation experienced by the optical field. From Eq. (2.26), it is inversely

proportional to wavelength, σ2
χ ∝ λ−7/6, and scales with turbulence strength, C2

n, and

optical path distance. Scintillation redistributes the optical field energy unpredictably

and produces branch points, where there are nulls in the irradiance. Branch points

originate around σ2
χ ≈ .25, where some classify as the origin of strong turbulence [35],

and increase as the Rytov number increases. Additionally, branch cuts arise between

the branch points where there is a 2π discontinuity in the phase. Figure 2.4 shows a

simulated point source numerically propagated through weak and strong turbulence.

The increase in scintillation is seen in the irradiance between Fig. 2.4 (a) and (b).

Additionally, the wrapped phase in Fig. 2.4 (d) is less smooth than in Fig. 2.4 (c).

2.2.3 Isoplanatic angle θ0

An imaging system is isoplanatic when it is a linear shift-invariant system [24],

meaning the system experiences proportional shift when the input is shifted. For

example, when a star streaks across a telescopes view, the imaged star also streaks in

the corresponding trajectory. The isoplanatic angle is the imaging system’s maximum

FOV for which it is still isoplantatic. From Eq. (2.27), it is proportional to wavelength

and decreases as optical path increases. When the imaging system is isoplanatic with

turbulence, which is typically the case with weak turbulence, the phase aberrations

can be estimated and corrected at the pupil of the imaging system. However, the
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Figure 2.4. Examples of a simulated point source numerically propagated 7.5 km
through weak turbulence (C2

n = 10−15, r0 = 9.5 cm, and σ2
χ = 0.135) [(a) and (b)] and

strong turbulence (C2
n = 3× 10−15, r0 = 5.1 cm, and σ2

χ = 0.404) [(c) and (d)] with a 30 cm
diameter aperture.

isoplanatic angle becomes smaller than the FOV of the imaging system, the phase

aberrations need to be estimated and corrected along the optical path in order to
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correct for the entire FOV. Otherwise, only an isoplanatic patch (e.g., an area of the

image that is isoplanatic) of the image would be corrected, provided you could zoom

in on that region of interest and locally apply the correction.

2.2.4 Deep turbulence

The term deep turbulence (also called distributed-volume turbulence) is used to

describe strong turbulence that is distributed along the optical path and causes the

imaging system to be anisoplanatic. In scenarios that experience strong turbulence

over a very short path (e.g. aero-optic effects since the turbulence effects are nearby

the pupil and not along the path), the system can still be isoplanatic. However,

over a long path of turbulence, the light from different points on the imaged object

experiences different turbulence along the path. Therefore, phase estimation and

correction is needed along the optical path, not just at the pupil.

2.3 Temporal coherence

For DH tactical applications, the hologram is formed because of the MO laser’s

temporal coherence. Goodman states that

”... the concept of temporal coherence has to do with the ability of
a light wave to interfere constructively and destructively with a delayed
version of itself.”. [36]

With that said, the temporally-dependent hologram irradiance, iH , is

iH(t, τ) = |UR(t)|2 + |US(t+ τ)|2

+ U∗R(t)US(t+ τ) + UR(t)U∗S(t+ τ),

(2.28)

where τ is the time delay between the signal and reference. The fringe visibility is

a physical metric which measures how well the signal and reference interfere. Using
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Eq. (2.28) and assuming iH(t, τ) is only dependent on τ and independent of t (i.e.,

the time origin), the fringe visibility, V , is defined as

V(τ) =
imaxH (τ)− iminH (τ)

imaxH (τ) + iminH (τ)
, (2.29)

where imaxH (τ) is the peak of the hologram fringe and iminH (τ) is the trough of the

hologram fringe [36]. V(τ) is a normalized metric, so V(τ) ranges from zero to one.

This provides a physical metric for the interference. However, this definition of V(τ)

is dependent on the signal and reference amplitudes.

Another function for coherence is the normalized complex degree of coherence,

γ(τ), [37] and is defined in terms of the reference and signal complex-optical fields as

γ(τ) =
〈UR(t)∗(t)US(t+ τ)〉
〈UR(0)US(0)〉 , (2.30)

where 〈·〉 is the expectation value, γ(τ) = 1 represents ideal coherence and γ(τ) =

0 represents no coherence. Note that Eq. (2.30) is an autocorrelation if the MO

laser is assumed to be at least wide-sense stationary since γ is only dependent on τ .

Additionally, V(τ) is related to γ(τ) via

V(τ) =
2|US||UR|
|US|2 + |UR|2

|γ(τ)|, (2.31)

and V(τ) = |γ(τ)| when |US|2 = |UR|2 [36]. An important property of γ(τ) is that it

is a Fourier transform pair with the normalized power spectral density (PSD), Ĝ(ν),

due to the Wiener-Khinchin theorem [36]. The PSD, G(ν), represents the frequency

content or spectrum of the MO laser and is normalized so that
∞∫
0

Ĝ(ν)dν = 1. Often

Ĝ(ν) is known or well approximated by a lineshape, such as a Gaussian, and therefore,

γ(τ) is also a Gaussian.
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Two common metrics often used to characterize the coherence of MO laser is the

coherence time, τc, and the coherence length, `c. Here, Mandel’s definition of τc is

used [38], which is defined as

τc =

∞∫

−∞

|γ(τ)|2 dτ, (2.32)

and `c = c τc, where c is the speed of light. Because of Eq. (2.32) and the the Wiener-

Khinchin theorem, τc and `c are inversely proportional to the full-width at half-max,

∆ν, of G(ν). With this inverse relationship, the narrower the ∆ν of the MO laser, the

longer τc and `c. Figure 2.5 illustrates the loss of coherence versus a normalized τ ,

where |γ(tc)| = 0.21. For DH, the approximated range of the system due to temporal

coherence is often considered to be `c/2 so that τ < τc.

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

τc ∼= 0.664
∆ν

|γ(τc)| ∼= 0.21

τ
[

1
∆ν

]

|γ
(τ
)|

Figure 2.5. The magnitude of the normalized complex-degree of coherence (|γ|) vs a
normalized time delay (τ) for a Gaussian power spectral density
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III. Deep-turbulence wavefront sensing using digital
holography in the on-axis phase shifting recording geometry

with comparisons to the self-referencing interferometer

The contents of this chapter, Appendix B, and Appendix C were published in the

Digital Holography and 3-D Imaging feature issue of Applied Optics, vol. 58, no. 5

on January 15, 2019 [39].

In this paper, we study the use of digital holography in the on-axis phase shifting

recording geometry for the purposes of deep-turbulence wavefront sensing. In par-

ticular, we develop closed-form expressions for the field-estimated Strehl ratio and

signal-to-noise ratio for three separate phase-shifting strategies—the four-, three-,

and two-step methods. These closed form expressions compare favorably with our

detailed wave-optics simulations, which propagate a point-source beacon through

deep-turbulence conditions, model digital holography with noise, and calculate the

Monte-Carlo averages associated with increasing turbulence strengths and decreasing

focal-plane array sampling. Overall, the results show the four-step method is the

most efficient phase-shifting strategy and deep-turbulence conditions only degrade

performance with respect to insufficient focal-plane array sampling and low signal-to-

noise ratios. The results also show the strong-reference beam from the local oscillator

provided by digital holography greatly improves performance by 10’s of dB when

compared with the self-referencing interferometer.

3.1 Introduction

Holography has a rich history in applications involving long-range imaging [4] and

wavefront reconstruction [1]. In practice, we can use these applications in concert to

overcome atmospheric distortions and low-signal levels [3, 40, 41]. With the advent

of robust focal-plane arrays (FPAs), researchers began to measure and store holo-
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grams digitally [2]. In an effort to characterize the atmosphere [32, 42, 43], this early

research provided the framework needed for deep-turbulence wavefront sensing using

digital holography.

Many applications, such as free-space laser communications, involve propaga-

tion paths which experience deep-turbulence conditions. Also known as distributed-

volume turbulence or strong turbulence, deep turbulence arises from atmospheric

aberrations being distributed along the propagation path. Given spatially coherent

light, this outcome gives rise to time-varying constructive and destructive interference.

Known as scintillation, this phenomena typically hinders wavefront-sensing perfor-

mance. While all atmospheric-optical paths experience scintillation to some degree,

the effects of scintillation are often negligible for the vertical-propagation paths (e.g.,

those associated with ground-based telescopes [12], which experience weak-turbulence

conditions) and often appreciable for the horizontal-propagation paths (e.g., those

associated with long-range imaging systems [18], which experience deep-turbulence

conditions).

Traditional wavefront-sensing methods use localized irradiance measurements to

estimate phase gradients [e.g., the Shack-Hartmann wavefront sensor (SHWFS)].

Note that these traditional methods enable near-diffraction-limited optical systems

[12]; however, performance degrades substantially in the presence of strong scintil-

lation. For all intents and purposes, strong scintillation occurs when, for example,

the spherical-wave log amplitude variance, which gives a measure for the amount of

scintillation, becomes greater than 0.2 [44, 45]. Given strong scintillation, branch

points arise in the continuous-phase function, in particular, where there are ampli-

tude nulls in the real and imaginary parts of the complex-optical field [13]. For

gradient-based wavefront sensors, like the SHWFS, these amplitude nulls cause the

wavefront sensor to measure and reconstruct noise. The branch points also add a
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rotational component to the phase function that gets mapped to the null space of a

least-squares phase reconstructor, which manipulates the estimated phase gradients

into a continuous-phase function. In turn, traditional wavefront-sensing methods do

not perform well in deep-turbulence conditions.

We can alternatively use interferometric wavefront-sensing methods, such as the

point-diffraction interferometer [46] and self-referencing interferometer (SRI) [47], to

obtain an estimate of the complex-optical field. This estimate gives us access to the

wrapped-phase function which contains both the irrotational and rotational phase

components [13]. As such, we can use a branch-point-tolerant phase reconstructor to

buy back performance when in the presence of strong scintillation [48]; however, this

approach has yet to be demonstrated beyond a scaled-laboratory environment [49].

This last detail is most likely due to additional constraints caused by deep-turbulence

conditions. For example, with an SRI, the received light is split to create a spatially

filtered reference beam. Typically, researchers perform this spatial filtering by cou-

pling the split received light into a single-mode optical fiber. When in the presence

of strong scintillation, which arises with deep-turbulence conditions, this coupling

results in efficiency losses and creates low signal-to-noise ratios (SNRs) that quickly

lead to performance degradations [50].

To overcome the performance degradations caused by deep-turbulence conditions,

we can instead use digital holography which is another interferometric wavefront-

sensing method. In practice, digital holography is able to resolve the branch points

associated with strong scintillation, since it provides us with an estimate of complex-

optical field and access to the wrapped-phase function which contains both the ro-

tational and irrotational phase components [13]. Furthermore, digital holography

is robust against the amplitude nulls caused by strong scintillation. The use of a

strong-reference beam from a local oscillator (LO) allows us to approach the shot-
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noise limit, since the signal beam is boosted above the read-noise floor of the FPA

[23]. With these benefits in mind, this paper evaluates the performance of digital

holography in the on-axis phase shifting recording geometry (PSRG), as shown in

Figs. 1 and 2. This paper, in turn, provides the necessary analysis needed to de-

sign and conduct future deep-turbulence experiments using digital holography in the

on-axis PSRG. These experiments shall investigate both open- and closed-loop per-

formance in scaled-laboratory and field environments. Such experiments shall also

include additional factors not investigated in this paper like reference-beam nonuni-

formity, detector nonlinearities, laser practicalities, and vibration resistance.

It is worth mentioning that this paper builds upon the noiseless analysis con-

tained in a recent conference proceeding by Thornton et al. [51]. Specifically, this

paper develops and verifies the use of closed-form expressions for the SNR and field-

estimated Strehl ratio with respect to the on-axis PSRG operating with three sepa-

rate phase-shifting strategies—the four-, three-, and two-step methods [52, 53]. Us-

ing detailed wave-optics simulations, which propagate a point-source beacon through

deep-turbulence conditions, model digital holography with noise, and calculate the

Monte-Carlo averages associated with increasing turbulence strengths and decreasing

focal-plane array sampling, the analysis shows the four-step method is the most effi-

cient phase-shifting strategy. Furthermore, deep-turbulence conditions only degrade

performance with respect to insufficient FPA sampling and low SNRs.

It is also worth mentioning that this paper is a companion paper to the analysis

presented by Spencer et al. [20] and Banet et al. [21] with respect to digital hologra-

phy in the off-axis image plane recording geometry (IPRG) and off-axis pupil plane

recording geometry (PPRG), respectively. In practice, the off-axis IPRG and off-axis

PPRG indirectly obtains an estimate of the complex-optical field from Fourier trans-

formations and digital-signal-processing techniques (i.e., filtering the 2D spectrum of
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the digital hologram recorded with the FPA). Conversely, the on-axis PSRG directly

obtains an estimate of the complex-optical field from multiple digital holograms being

recorded on one or more FPA(s) and straightforward calculations [23].

In what follows, this paper develops closed-form expressions for two performance

metrics (cf. Section 3.2), the SNR and field-estimated Strehl ratio, and verifies their

use with detailed wave-optics simulations, which again, propagate a point-source bea-

con through deep-turbulence conditions, model digital holography with noise, and

calculate the Monte-Carlo averages associated with increasing turbulence strengths

and decreasing focal-plane array sampling. (cf. Section 3.3). This outcome demon-

strates the on-axis PSRG is another valid recording geometry for deep-turbulence

wavefront sensing. Before moving onto the next section, it is important to note that

digital holography in the on-axis PSRG and the SRI are similar in design, except for

the origin of the reference beam. Therefore, this paper also includes a comparison

between digital holography in the on-axis PSRG and the SRI to show the benefits of

using a strong-reference beam for applications involving deep-turbulence conditions

(cf. Section 3.4).

3.2 Development of closed-form expressions for two performance metrics

This section provides an overview of the optical setup used for digital holography

in the on-axis PSRG. It also develops estimate and noise models for three separate

phase-shifting strategies—the four-, three-, and two-step methods. We then use the

models to develop closed-form expressions for the SNR and field-estimated Strehl

ratio. In the ensuing sections, we verify the use of these performance metrics via

wave-optics simulations and then use them to compare the performance of digital

holography in the on-axis PSRG to the performance of an SRI, both using the four-

step method (i.e., the most efficient method).
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3.2.1 Optical Setup

As shown in Fig. 3.1, to realize digital holography in the on-axis PSRG, we split

a master oscillator (MO) laser into two optical legs. The first leg flood illuminates an

unresolved, ball-bearing object creating a point-source beacon. Then, the reflected

spherical wave propagates through deep-turbulence conditions and becomes the sig-

nal beam US collimated in a pupil. The second leg creates a LO that gives rise to

a reference beam UR. After the reference and signal beams pass through the phase

shifting optics (PSO), we use the interference of light to create multiple holograms

and record the resulting hologram irradiances i
(δ)
H on the FPA(s).

With Fig. 3.1 in mind, we show some of the details of the PSO in Fig. 3.2 for

the four-step method. As shown in Fig. 3.2, the purpose of the PSO is to obtain the

desired phase shift δ on the reference beam for the recorded holograms. Note that,

in practice, a phase shift of π occurs with reflections from the mirrors (M) and 50/50

beam splitters (BS) when the light is incident on the side favoring the black dot. The

reflected light incident on the opposing side of the black dot does not incur a phase

shift [25]. Additionally, we obtain a π/2-phase shift at the quarter-wave plate (QWP).

Aggregating these phase shifts for the reference and signal beams results in the four

holograms shown in Fig. 3.2 and has been demonstrated in hardware [54, 55].

There are two more items to consider with respect to Fig. 3.2: optical-path

length and polarization. As shown, we do not draw the optical-path lengths to scale,

and in a real system, we would want to match the optical-path lengths to ensure the

proper phase shifts and minimize any losses in fringe visibility due to vibrations. Also

note that we would need to image the signal and reference beams onto the FPA(s) to

record the resulting hologram irradiances. To do so, we would need to employ relay

optics (not shown here) to create conjugate pupil planes at the FPA(s), so that we

conserve the phase of the signal and reference beams in forming our holograms. With
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Figure 3.1. An illustration of digital holography in the on-axis PSRG. Note that we
need phase-shifting optics (PSO) to implement our phase-shifting strategy (cf. Fig.
3.2).

respect to the polarization concerns, maximum fringe visibility only occurs when the

reference and signal beam’s polarization states match. However, in a real system,

the reference beam’s polarization state is probably different than the signal beam’s

polarization state due to rough-surface scattering from the object. Therefore, also not

shown here are the polarization optics we would need to use to maximize the fringe

visibility in our holograms. Moving forward in the analysis, we simply assume that

we match the polarization states and that we are only dealing with absolute phase

shifts (e.g., there are no piston errors in the phase shifts).

With the above assumptions in mind, the on-axis PSRG can employ different

phase-shifting strategies to calculate the complex-optical field [52, 53]. In this pa-

per, we analyze three methods, namely, the four-, three-, and two-step methods. As

previously stated, we show the four-step method’s PSO in Fig. 3.2. The three- and

two-step methods use similar PSO with some exceptions. In particular, we can mod-

ify the fraction of transmitted/reflected light off the first beam splitter encountered

for the reference and signal beams to ensure equal amounts of light for each hologram.

We can also exchange the final beam splitters with beam-combining optics to remove
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Figure 3.2. An example of the PSO needed for the four-step method. This example
also contains an illustration of the directional dependence of the π-phase shift upon
reflection from a beam splitter (BS).

the unnecessary measurements while preserving the signal beam. In so doing, we only

divide the signal beam by the number of holograms desired, and the holograms make

use of corresponding strong-reference beams to maximize SNR.
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3.2.2 Estimate model

Provided Figs. 3.1 and 3.2, the hologram irradiances i
(δ)
H take the following form:

i
(δ)
H =

∣∣US + UR e
−jδ∣∣2

= |US|2 + |UR|2 + USU
∗
R e

jδ + U∗SUR e
−jδ,

(3.1)

where δ is again the desired reference-beam phase shift. Throughout the analysis, it

is important to note that we assume, by choice, a spatially uniform reference beam.

With increments of π/2 phase shifts, the corresponding i
(δ)
H become

i
(0)
H = |US|2 + |UR|2 + USU

∗
R + U∗SUR

i
(π/2)
H = |US|2 + |UR|2 + jUSU

∗
R − jU∗SUR

i
(π)
H = |US|2 + |UR|2 − USU∗R − U∗SUR

i
(3π/2)
H = |US|2 + |UR|2 − jUSU∗R + jU∗SUR.

(3.2)

Here, we replace the superscript δ with the appropriate reference-phase shift and ∗

denotes complex conjugate.

Provided Eq. (3.2), we can perform algebraic manipulations to isolate the signal

beam US [52]. For each of the phase-shifting strategies considered in this paper, we

arrive at the following relationships:

4U∗RUS =
(
i
(0)
H − i

(π)
H

)
− j

(
i
(π/2)
H − i(3π/2)

H

)
(3.3)

for the four-step method,

4U∗RUS = (1 + j)
(
i
(0)
H − i

(π/2)
H

)
+ (j − 1)

(
i
(π)
H − i

(π/2)
H

)
(3.4)
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for the three-step method, and

2U∗RUS =
(
i
(0)
H − |US|2 − |UR|2

)
− j

(
i
(π/2)
H − |US|2 − |UR|2

)
(3.5)

for the two-step method. Notice that the two-step method also requires that we

know the irradiances associated with the signal and reference beams (cf. Eq. 3.5).

To obtain the reference-beam irradiance, we would need to add a way to monitor

the reference beam. This addition might seem excessive at first; however, in a real

system, this monitoring would also allow us to maintain the strong-reference beam

assumption and avoid pixel saturation on the FPA(s). To obtain the signal-beam

irradiance, we can make use of the following relationship derived by Poon and Liu

[56]:

2 |US|2 = i
(0)
H + i

(π/2)
H −

{[
2 |UR|2 + i

(0)
H + i

(π/2)
H

]2

−

2

[
4 |UR|4 +

(
i
(0)
H

)2

+
(
i
(π/2)
H

)2
]}1/2

.

(3.6)

This relationship helps our efforts since the low-signal levels associated with deep-

turbulence conditions make the signal-beam irradiance hard to monitor.

With Eqs. (3.1-3.6) in mind, we can record the hologram irradiances i
(δ)
H with a

FPA, which performs a pixel-by-pixel integration [23]. Thus, for a FPA with M × N

pixels,

î
(δ)
H (nxp,myp) =

1

wxwy

∞∫∫

−∞

i
(δ)
H (x′, y′) rect

(
x′ − nxp
wx

)
rect

(
y′ −myp

wy

)
dx′dy′ ,

(3.7)
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where m and n are the FPA pixel indices from m = 1 to M and n = 1 to N , xp and

yp are the pixel pitches, wx and wy are the pixel widths, and

rect(x) =





1 0 ≤ |x| < 0.5

0.5 |x| = 0.5

0 |x| > 0.5

(3.8)

is the rectangle function. Since the FPA detects photoelectrons [25, 28], we determine

the per-pixel mean number of hologram photoelectrons mH (nxp,myp) as

m
(δ)
H (nxp,myp) =

ητwxwy
h ν

î
(δ)
H (nxp,myp)

=
ητ

h ν
i
(δ)
H (nxp,myp)

∗ ∗ rect

(
nxp
wx

)
rect

(
myp
wy

)
,

(3.9)

where η is the quantum efficiency, τ is the integration time, h is Planck’s constant, ν

is the optical frequency, and ∗∗ denotes 2D convolution. Similarly, we determine the

per-pixel mean number of reference photoelectrons mR as

mR =
ητwxwy
hν

|UR|2 , (3.10)

where again, we drop the pixel coordinates to denote spatial uniformity. The per-pixel

mean number of signal photoelectrons mS (nxp,myp) then becomes

mS (nxp,myp) =
ητ

hν
|US (nxp,myp)|2

∗ ∗ rect

(
nxp
wx

)
rect

(
myp
wy

)
.

(3.11)
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We will use these last-two relationships in the coming noise-model analysis.

Provided the right-hand sides of Eqs. (3.3 - 3.5), which depend on the measured

hologram irradiances, i
(δ)
H , we can use Eq. (3.9) to obtain a generic expression for

the signal-beam estimate, Û
(s)
S , in terms of the left-hand sides of Eqs. (3.3 - 3.5). In

particular,

Û
(s)
S (nxp,myp) =

κ√
s

ητ

hν
U∗RUS (nxp,myp)

∗ ∗ rect

(
nxp
wx

)
rect

(
myp
wy

)
,

(3.12)

where s is the number of shifts or measurements required by the phase-shifting strat-

egy (e.g., s = 4, 3, and 2 for the four-, three-, and two-step methods, respectively) and

κ is a phase-shifting constant, such that κ = 4 for the four- and three-step methods

and κ = 2 for the two-step method (cf. the left-hand sides of Eqs. (3.3) - (3.5). In

using Eq. (3.12) along with Eqs. (3.3) - (3.5), we define the magnitude of signal beam

at the pupil before the PSO (hence the exclusion of s and κ in Eq. (3.11), so that

we can easily compare the three methods. Also note that we define the magnitude

of the reference beam at the FPA(s), since we can easily adjust the strength of the

reference beam using the LO (cf. Figs. 3.1 and 3.2). As such, we are left with a

straightforward calculation to obtain the wrapped-phase function from an estimate

of the complex-optical field. We illustrate this process for the four-step method in

Fig. 3.3.

3.2.3 Noise model

Moving forward in the analysis, we would like to account for the effects of shot

noise and read noise. For this purpose, we assume that the shot noise results from the

random arrival times of the photons that are incident on the FPA, and that the read

noise results from the read-out integrated circuitry of the FPA. We also assume that

31



www.manaraa.com

|UoU∗o |

6 Uo

6 Ur(0) 6 Ur(π2 )
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Figure 3.3. An illustration of how digital holography in the on-axis PSRG allows us
to access the wrapped-phase function. Here, we use the interference of light to create
multiple holograms by mixing a phase-shifted reference beam with a signal beam. Note
that the number of shifts or measurements required by the phase-shifting strategy
is dependent on the phase-shifting method being used (here, we illustrate the four-
step method). After we record the hologram irradiances with a FPA, we perform a
straightforward calculation to obtain the wrapped-phase function from an estimate of
complex-optical field [cf. Eq. (3.12) along with Eqs. (3.3) - (3.5)].

the shot noise follows a Poisson distribution, whereas read noise follows a Gaussian

distribution.

For a Poisson-distributed random process, the mean is equal to the variance [25].

In this paper [cf. Eqs. (3.10) and (3.11)], the mean is equal to the sum of the per-

pixel mean number of photoelectrons from the signal and reference beams, mS and

mR, respectively. Here, we drop the FPA coordinates to denote the average over

the entire detection area. Since we set mR to 75% of pixel-well depth of the FPA,

we assume that mR � mS and that the mean number of hologram photoelectrons

varies little from pixel to pixel because of the strong-reference beam (mH ≈ mR). In

turn, the Poisson-distributed shot noise follows a Gaussian distribution (to a good

approximation when mR � 1) with variance mR + mS ≈ mR. Armed with these

assumptions, we can add the variances for each Gaussian-distributed random process

and arrive at the noise variance σ2
n, such that

σ2
n = mR + σ2

r , (3.13)
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where σ2
r is the variance of the read noise.

In the analysis that follows, we model the additive Gaussian noise [23], such that

m
(δ)
H+N (nxp,myp) = m

(δ)
H (nxp,myp) + σnnk (nxp,myp) , (3.14)

wherem
(δ)
H+N is the mean number of hologram photo-electrons with noise and nk (nxp,myp)

is the kth realization of real-valued, zero-mean, unit-variance Gaussian random num-

bers. Correspondingly, the signal-beam estimate with noise U
(s)
S+N takes the following

form:

Û
(s)
S+N (nxp,myp) = Û

(s)
S (nxp,myp) +

√
ζσnNk (nxp,myp) , (3.15)

where ζ is a constant resulting from the number of noise-contributing terms in Eqs.

(3.3) - (3.5) (i.e., ζ = 4 for the four- and two-step methods and ζ = 8 for the three-

step method), σ2
n is the noise variance [cf. Eq. (3.13)], and Nk (nxp,myp) is the

kth realization of circular-complex Gaussian random numbers with zero mean and

unit variance. In the signal-beam estimate, Û
(s)
S [cf. Eq. (3.12)], each measured

hologram irradiance, i
(δ)
H , adds to the total noise of the estimate and ζ accounts for

this addition. Lastly, we state that ζ = 4 for the two-step method; however, Eq. (3.5)

has six terms. Since we assume mR � mS, the noise from the signal-beam irradiance

(|US|2) is negligible and even more so with the use of Eq. (3.6). This assumption is

a sound one, as shown in the following analysis.
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3.2.4 Signal-to-Noise and Field-Estimated Strehl Ratios

In what follows, we formulate the SNR S/N (s) as the ratio of the mean-signal

power to the total-noise variance. As such, we obtain the following relationship:

S/N (s) =

〈∣∣∣Û (s)
S (x, y)

∣∣∣
2
〉

V
{
Û

(s)
S+N(x, y)

} , (3.16)

where 〈·〉 denotes mean over all pixels, Û
(s)
S is the signal-beam estimate [cf. Eq.

(3.12)], V {·} denotes the variance operator over all pixels, and Û
(s)
S+N is the is the

signal-beam estimate with noise [cf. Eq. (3.15)]. Here, we again drop the FPA

coordinates to denote the average over the entire detection area. Provided Eq. (3.16)

along with Eqs. (3.10 - 3.12), we then determine the mean-signal power as

〈∣∣∣Û (s)
S (x, y)

∣∣∣
2
〉

=
κ2

s
mRmS, (3.17)

and the total-noise variance as

V
{
Û

(s)
S+N(x, y)

}
= ζσ2

n. (3.18)

Substituting Eqs. (3.17) and (3.18) into Eq. (3.16), we obtain the following

closed-form expressions for the SNR:

S/N (4) =
mRmS

mR + σ2
r

(3.19)

for the four-step method,

S/N (3) =
2

3

mRmS

mR + σ2
r

(3.20)
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for the three-step method, and

S/N (2) =
1

2

mRmS

mR + σ2
r

(3.21)

for the two-step method. If mR � σ2
r , then we reach the shot-noise limit and these

closed-form expressions become a function of only mS. In turn, these closed-form ex-

pressions for the SNR provide a nice metric for the performance of digital holography

in the on-axis PSRG.

Another performance metric of interest in the analysis is the field-estimated Strehl

ratio S
(s)
F [57, 20, 21]. As shown in Appendix B and C, we can relate S

(s)
F to the SNR

S/N (s) via the following relationship [57]:

S
(s)
F =

1

1 + 1
S/N(s)

. (3.22)

Provided Eq. (3.22) along with Eqs. (3.19 - 3.21), we obtain the following closed-form

expressions for field-estimated Strehl ratio:

S
(4)
F =

mRmS

mRmS +mR + σ2
r

(3.23)

for the four-step method,

S
(3)
F =

2mRmS

2mRmS + 3 (mR + σ2
r)
, (3.24)

for the three-step method, and

S
(2)
F =

mRmS

mRmS + 2 (mR + σ2
r)
, (3.25)
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for the two-step method. We verify the use of these closed-form expressions in the

next section.

3.3 Performance Metric Comparison using Wave-Optics Simulations

This section develops the wave-optics simulations employed to verify the closed-

form expressions developed above for the signal-to-noise and field-estimated Strehl

ratios. We conduct this analysis entirely in MATLAB using the principles from

Schmidt [34] with help from WaveProp [58] and AOTools [59] which are MATLAB

toolboxes written by the Optical Sciences Company. For further insight on these

wave-optics simulations, we list several references that include additional detail [60,

20, 61, 21, 51].

3.3.1 Numerical Model

With Fig. 3.1 in mind, we modeled the point-source beacon as a narrow sinc func-

tion modulated by a raised-cosine envelope on a 4096 x 4096 numerical grid. Note

that we set the physical side length of the numerical grid in the object plane, so that

we met Fresnel scaling. We then propagated the point-source beacon to the pupil

plane using the split-step beam propagation method. Here, we collimated the light

and cropped the numerical grid to 256 256, so that it had the same physical side

length as the pupil diameter, D. We provide a list of simulation parameters in Table

3.1.

Table 3.1. Simulation parameters used in the wave-optics simulations.

λ = 1 µm optical wavelength
D = 30 cm pupil diameter
z = 7.5 km propagation distance
h = 10 m horizontal-path altitude

With Table 3.1 in mind, we modeled five-distinct scenarios with increasing turbu-

36



www.manaraa.com

lence strengths. Table 3.2 lists the refractive-index structure parameter, C2
n, spherical-

wave log amplitude variance (Rytov number), σ2
χ−sw, and spherical-wave coherence

length (Fried parameter), r0−sw, for the various scenarios. For a given C2
n, wave-

length λ, and horizontal-path propagation distance z, we can calculate σ2
χ−sw and

r0−sw, respectively, using the following formulas [33]:

σ2
χ−sw = 0.124k7/6z11/6C2

n (3.26)

and

r0−sw = 0.33

(
λ2

zC2
n

)3/5

, (3.27)

where k = 2π/λ is the angular wavenumber. Provided Eqs. (3.26) and (3.27), the

turbulence strength becomes proportional to the Rytov number and inversely propor-

tional to the Fried parameter. Recall for imaging systems, the Fried parameter pro-

vides a measure for resolution relative to the pupil diameter D; therefore, the larger,

the better. Additionally, the Rytov number provides a measure for the amount of

scintillation. As a rule of thumb, Rytov numbers less than 0.2 provide weak scintil-

lation and those greater than 0.2 provide strong scintillation. As shown in Table 2,

the turbulence strength increases from Scenario 1 to Scenario 5.

With respect to the split-step beam propagation method, we used ten equally-

spaced Kolmogorov phase screens to achieve deep-turbulence conditions. By satisfy-

ing Fresnel scaling, we met all of the sampling requirements set forth by Schmidt [34],

as discussed in Thornton et al. [51]. For model verification, the discrete calculations

Table 3.2. Turbulence parameters used for five-distinct scenarios.

Scenario 1 2 3 4 5

C2
n

[
m−2/3 × 10−15

]
1.00 1.50 2.00 2.50 3.00

σ2
χ−sw 0.135 0.202 0.270 0.337 0.404

r0−sw [cm] 9.92 7.78 6.55 5.73 5.14
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were within 1% error when compared to the continuous calculations [cf. Eq. (3.26)

and (3.27)]. Additionally, we calculated the Monte-Carlo averages associated with

the magnitude of the complex degree of coherence in the pupil plane using 40 inde-

pendent realizations for Scenarios 1-5 in Table 3.2, and the results closely matched

theory [51]. We show an example of one realization of the irradiance and wrapped

phase in Fig. 3.4 for the simulated signal-beam truth.

In addition to the turbulence strength, we varied the FPA sampling by changing

the number of FPA pixels across a demagnified pupil image. For this objective, we

interpolated the simulated signal beam in the pupil plane to match the size of the

FPA. Note that we fixed the square-pixel width, so that the physical size of the FPA

was proportional to the number of pixels across. Therefore, we demagnified the simu-

lated signal beam, such that MT = W/D, where MT is the transverse magnification,

W = Npwx,y is the side length of the FPA, Np is the FPA sampling, and wx,y is the

square-pixel width. After this demagnification via interpolation, we scaled the mean

number of signal photoelectrons mS to vary the signal strength. For this purpose,

we set the characteristics of the FPA, such that the quantum efficiency was 100%,

as well as the pixel-fill factor. Additionally, we assumed a uniform, linear-pixel gain

from zero to saturation (100,000 pe). As mentioned before, we then set the read-noise

standard deviation, such that σr = 100 pe, and the strength of the simulated strong-

reference beam, so that mR = 75, 000 pe. Put another way, we set the mean number

of reference photoelectrons mR to 75% of pixel-well depth of the FPA to create a

strong-reference beam but avoid pixel saturation and excess shot noise.

We accounted for each phase-shifting strategy by dividing the simulated signal

beam by the number of measurements needed for the corresponding method [cf. the

factor s in Eq. (3.12)]. With this in mind, we then estimated the complex-optical

field in the pupil plane with the corresponding pixel-by-pixel formulas [cf. Eq. (3.12)
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Figure 3.4. The (a) irradiance and (b) wrapped phase for the simulated signal-beam
truth for one realization of the turbulence (cf. Scenario 5 in Table 3.2).

along with Eqs. (3.3) - (3.5)]. We show an example of one realization of the irradiance

and wrapped phase in Fig. 3.5 for the simulated signal-beam estimate.

3.3.2 Numerical Results

The results of the wave-optics simulations presented here cover a three-fold trade

space with respect to the four-, three-, and two-step methods. In particular, we

quantify performance by

1. varying the signal strength,

2. varying the turbulence strength, and

3. varying the FPA sampling.

As shown in Fig. 3.6, we verify the use of Eqs. (3.19) - (3.25). Here, we compare

both the numerical field-estimated Strehl ratio SF and numerical SNR S/N to theory.
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Figure 3.5. The (a) irradiance and (b) wrapped phase for the simulated signal-beam
estimate for one realization of turbulence (cf. Scenario 5 in Table 3.2).

Note that the differences between the theoretical lines and data points are less than

1% for the Monte-Carlo averages from 40 independent realizations of turbulence and

30 independent realizations of noise for all of the scenarios given in Table 3.2. To

calculate SF , we made use of the following relationship (cf. Appendix B):

SF =

∣∣∣
〈
US(x, y)Û∗S+N(x, y)

〉∣∣∣
2

〈|US(x, y)|2〉
〈
|ÛS+N(x, y)|2

〉 , (3.28)

where US(x, y) is the signal-beam truth and ÛS+N(x, y) is the signal-beam estimate

with noise. Similarly, to calculate S/N , we made use of the following relationship:

S/N =

〈
|ÛS+N |2 − |ÛN |2

〉

V ar{ÛN}
(3.29)
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where ÛN is the noise estimate associated with reconstructing only the strong-reference

beam [cf. Eq. (3.12) along with Eqs. (3.3) - (3.5)].

With the results of Fig. 3.6 in mind, in Fig. 3.7 we compare the numerical field-

estimated Strehl ratio SF as a function of signal strength mS to theory [cf. Eq. (3.25

- 3.23)]. Again, the observed error between theory and the numerical results is less

than 1% for the Monte-Carlo averages from 40 independent realizations of turbulence

and 30 independent realizations of noise for Scenario 1 and 5 in Table 3.2. From the

results, we see that the four-step method is the most efficient phase-shifting strategy,

despite having the most required signal-beam splits. The complete sampling of the

phase in π/2 steps, in practice, results in a more-precise estimate of the complex-

optical field. Put another way, the ζ term within the total-noise variance ζσn [cf. Eq.

(3.16)] introduces less noise into the estimate for the four-step method.

It is important to note that the the results contained in Figs. 3.6 and 3.7 made

use of a FPA with 256 pixels across the simulated demagnified pupil image (i.e.,

MT = 1). With that said, Fig. 3.8 shows the relative percent difference between

the theoretical and numerical field-estimated Strehl ratios for Scenarios 1 and 5 from

Table 3.2 and the four-step method. Here, MT varied such that the modeled, square

FPA size ranged from 16 - 256 pixels across (Np), and as such, the signal-beam esti-

mate’s grid size varied from 16x16 to 256x256. To compare the signal-beam estimate

to the simulated signal-beam truth (256 pixels across), we upsampled via linear inter-

polation. We plot the results as a function of the FPA sampling Np (y axis) and the

signal strength mS (x axis). In Fig. 3.8, we calculate the relative percent difference

as

∆SF =
SF − S(4)

F

S
(4)
F

× 100, (3.30)

where S
(4)
F is the theoretical result [cf. Eq. (3.23)]. Provided Eq. (3.30), positive

values represent the case where SF > S
(4)
F , whereas negative values represent the case
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Figure 3.6. The numerical field-estimated Strehl ratio SF versus the numerical SNR
S/N with a comparison to theory. Shown here is the Monte-Carlo averages from 40
independent realizations of turbulence and 30 independent realizations of noise for all
of the scenarios given in Table 3.2 and the three separate phase-shifting strategies of
interest in this paper. Note that Np = 256 for all of these results.

where SF < S
(4)
F .

With Fig. 3.8 in mind, a couple features become apparent in the analysis.

First, we reach steady-state differences between the theoretical and numerical results

when mS & 10, which is where the S/N & 10 and SF & 0.9. As we increase the

turbulence strength, the induced sampling errors also increase, and the results for

Scenarios 2-4 also follow this trend. Thus, turbulence strength only affects the FPA

sampling requirements. The largest differences occur with smaller values of Np and

stronger turbulence strengths. Secondly, at low SNR’s (S/N < 10), the differences

vary greatly with Np. This outcome is due to the smoothing that occurs given the

coarser FPA sampling [cf. the 2D convolution in Eq. (3.12)]. It also shows that when

we properly sample the Fried parameter [cf. Eq. (3.27)], digital holography estimates
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Figure 3.7. The numerical field-estimated Strehl ratio SF versus the the signal strength
mS with a comparison to theory. Shown here is the Monte-Carlo averages from 40
independent realizations of turbulence and 30 independent realizations of noise for
Scenario 1 and Scenario 5 in Table 3.2 and the three separate phase-shifting strategies
of interest in this paper. Note that Np = 256 for all of these results. Also note that the
◦’s represent the results from Scenario 1, whereas the +’s represent the results from
Scenario 5.

the complex-optical field exceptionally well [62].

3.4 SRI Comparison

As discussed above, the SRI is an alternative interferometric wavefront-sensing

method [47]. The primary difference between digital holography and the SRI is that

the SRI splits the received signal beam to create a reference beam via spatial filter-

ing, typically with a single-mode optical fiber. With that said, Rhoadarmer and Klein

provide further discussion on the design of an SRI [55]. Various phase-shifting strate-

gies also exist for the SRI, but similar to digital holography in the on-axis PSRG, the
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(a)

(b)

Figure 3.8. The relative percent difference (∆SF ) between the theoretical and numerical
field-estimated Strehl ratios for (a) Scenario 1 and (b) Scenario 5 from Table 3.2. We
plot the results as a function of the FPA sampling Np and mean signal strength mS for
the four-step method [cf. Eq. (3.23)]. Shown here is the Monte-Carlo averages from
40 independent realizations of turbulence and 30 independent realizations of noise.
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four-step method has the best performance [63].

In this section, we model deep-turbulence wavefront sensing using the SRI in the

same fashion as the four-step method for digital holography in the on-axis PSRG

(i.e., in an open-loop configuration) with a few exceptions. The first exception is that

we set the beam-splitter ratio β, which splits the signal beam to create the reference

beam, so that mS = mR. This choice maximizes the SNR [64]. Additionally, we

include the effects of a fiber-coupling efficiency ηc. Wheeler and Schmidt [50] showed

that this efficiency depends on the spatial coherence radius ρ0 or the coherence length

r0, since r0 ≈ 2.1ρ0 [35], relative to the pupil diameter D. From Table 3.2, the cor-

responding ηc for Scenario 1 and Scenario 5 is 10% and 1%, respectively. Therefore,

in the analysis that follows, we make use of the following three cases: ηc = 100% for

the ideal case, ηc = 10% for Scenario 1, and ηc = 1% for Scenario 5.

Because of the losses encountered with the fiber-coupling efficiency ηc, we need

to introduce a new term: mi, which is the mean number of incident photoelectrons.

For digital holography in the on-axis PSRG, mi = mS, since we use 100% of the

signal beam. On the other hand, for the SRI, mS = βmi, which is the percent of the

incident light split for the signal beam, and mR = (1− β)ηcmi, which is the percent

of the incident light both split and coupled into the single-mode optical fiber for the

reference beam. In turn, mL = (1− β)(1− ηc)mi is the percent of the incident light

lost do to fiber coupling, so that mi = mS +mR +mL for the SRI.

Similar to the analysis presented above (cf. Section 3.2), Rhodarmer and Barchers

formulated closed-form expressions for the SRI [57]. With respect to the four-step

method, the SNR S/N
(4)
SRI and field-estimated Strehl ratio S

(4)
F, SRI follow as

S/N
(4)
SRI =

1

4

m2
S

mS/2 + σ2
r

, (3.31)
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and

S
(4)
F, SRI =

m2
S

m2
S + 2mS + 4σ2

r

, (3.32)

respectively. Provided Eqs. (3.31) and (3.32), we compare the performance of digital

holography in the on-axis PSRG to the SRI.

For the comparison, we formulated results from two perspectives, as shown in

Figs. 3.9 and 3.10. Here, we verified the use of the closed-form expressions for the

SRI [cf. Eqs. (3.31) and (3.32)]. Note that the differences between the theoretical lines

and data points are less than 1% for the Monte-Carlo averages from 40 independent

realizations of turbulence and 30 independent realizations of noise. Also, we made use

of a FPA with 256 pixels across the simulated demagnified pupil image. With that

said, the results show that digital holography in the on-axis PSRG outperforms the

SRI with respect to the numerical field-estimated Strehl ratio SF (cf. Fig. 3.9) and

the numerical SNR S/N (cf. Fig. 3.10) by multiple orders of magnitude. As shown in

Fig. 3.10, for example, there are notable differences in the incident mean number of

incident photoelectrons mi required to reach an S/N = 10 with approximately 21 dB

difference for the ideal case (green to yellow), 28 dB difference for Scenario 1 (green to

orange), and 37 dB difference for Scenario 5 (green to red). These differences represent

the necessary SRI signal amplification needed to achieve similar performance to digital

holography in the on-axis PSRG due to the lack of a strong-reference beam from the

LO provided by digital holography.

3.5 Conclusion

The results presented here showcase the strengths of digital holography in the on-

axis PSRG for the purposes of deep-turbulence wavefront sensing. Throughout this

paper, we develop closed-form expressions for the field-estimated Strehl and signal-
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Figure 3.9. The numerical field-estimated Strehl ratio SF versus the mean number of
incident photoelectrons mi for digital holography in the on-axis PSRG and the SRI
with 100%, 10% and 1% fiber-coupling efficiency. Here, the solid lines represent the
theoretical results for the four-step method [cf. Eq. (3.23) for digital holography in the
on-axis PSRG and Eq. (3.32) for the SRI]. The ◦’s represent the numerical results for
Scenario 1, whereas the x’s represent the numerical results for Scenario 5 (cf. Table
3.2). Shown here is the Monte-Carlo averages from 40 independent realizations of
turbulence and 30 independent realizations of noise.

to-noise ratios for the two-, three-, and four-step methods. Using detailed wave-optics

simulations, which propagate a point-source beacon through deep-turbulence condi-

tions, model digital holography with noise, and calculate the Monte-Carlo averages

associated with increasing turbulence strengths and decreasing focal-plane array sam-

pling, we also verify the use of these closed-form expressions. Overall, the results show

the four-step method is the most efficient phase-shifting strategy and deep-turbulence

conditions only degrade performance with respect to insufficient FPA sampling and

low SNRs.

The first result is somewhat counterintuitive since the four-step method requires

the most signal-beam splits. However, the results of the closed-form expressions and
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Figure 3.10. The numerical SNR S/N versus the mean number of incident photoelec-
trons mi for digital holography in the on-axis PSRG and the SRI with 100%, 10%
and 1% fiber-coupling efficiency. Here, the solid lines represent the theoretical results
for the four-step method [cf. Eq. (3.19) for digital holography in the on-axis PSRG
and Eq. (3.31) for the SRI). The ◦’s represent the numerical results for Scenario 1,
whereas the x’s represent the numerical results for Scenario 5 (cf. Table 3.2). Shown
here is the Monte-Carlo averages from 40 independent realizations of turbulence and
30 independent realizations of noise.

detailed wave-optics simulations show the four-step method is more concise with less

noise in estimating the complex-optical field. Furthermore, when the FPA sampling

and SNR is sufficient, the percent difference between the theoretical results and the

numerical results is negligible, regardless of the turbulence strength. In general, the

results show when the FPA sampling is greater than 32 pixels and the SNR is greater

than 10, the field-estimated Strehl ratios are greater than 0.9 (with respect to the

four-step method).

A comparison to the SRI also shows the benefits of using a strong-reference beam

to perform interferometric wavefront sensing. For this purpose, we modeled the SRI

in an ideal way and included the effects of a fiber-coupling efficiency to provide more-
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realistic SNRs with increasing turbulence strengths. In the low-SNR regime, the SRI

needs 10’s of dB more signal-beam power to achieve similar performance to digital

holography in the on-axis PSRG. As such, this comparison provides a performance

benchmark for applications involving deep-turbulence conditions.

In summary, this paper evaluates the performance of digital holography in the on-

axis PSRG and enables the optimal design of such a deep-turbulence wavefront sensor.

By employing four π/2 phase shifts, we minimized the total noise and improved sys-

tem performance in terms of both the SNR and field-estimated Strehl ratio. System

performance also approached theoretical limits when we sampled the four digital holo-

grams with at least five pixels across the Fried parameter. Since digital holography

provides a strong-reference beam from a LO, we then showed it outperforms the SRI

in low signal-to-noise conditions for deep-turbulence applications. In turn, this paper

provides the necessary analysis needed to design and conduct future deep-turbulence

experiments using digital holography in the on-axis PSRG.
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IV. Digital holography efficiency measurements with excess
noise

The contents of this chapter was submitted to the Digital Holography and 3-D

Imaging feature issue of Applied Optics on June, 24 2019 [65].

In this paper, we use digital holography (DH) in the off-axis image plane recording

geometry with a 532 nm continuous-wave laser to measure the system efficiencies

(multiplicative losses) associated with a closed-form expression for the signal-to-noise

ratio (SNR). Measurements of the mixing efficiency (36.8%) and the reference-noise

efficiency (74.5%) provide an expected total-system efficiency of 22.7%± 6.5% and a

measured total-system efficiency of 21.1%± 6.5%. These total-noise efficiencies do not

include our measurements of the signal-noise efficiency (3%-100%), which are highly

dependent on the signal strength and become significant for SNRs > 100. These

results confirm that the mixing efficiency is generally the dominate multiplicative

loss with respect to the DH system under test; however, excess reference and signal

noise are significant multiplicative losses as well. Previous results also agree with

these experimental findings.

4.1 Introduction

Digital holography (DH) has various remote-sensing applications including long-

range imaging[10], 3D imaging [11], and wavefront sensing[66]. In particular, DH

offers distinct benefits over traditional wavefront-sensing methods, such as a Shack-

Hartmann wavefront sensor, given deep-turbulence conditions [20, 21, 39]. These con-

ditions often arise from long, horizontal-propagation paths through the atmosphere

and yield low signal-to-noise ratios (SNRs).

With low SNRs in mind, DH uses a strong reference to boost the weak signal

above the noise and provide access to the complex-optical field. Since the SNR limits
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the effective ranges of a fielded DH system, it is convenient to treat each source of

loss as multiplicative factors in the derived SNR expression to estimate performance.

Moving forward we need to quantify these multiplicative losses in order to character-

ize the performance of a fielded DH system.

In terms of performance, the dominate multiplicative loss or system efficiency is

typically the mixing efficiency (i.e., the detected visibility of the signal and reference

interference). For example, depolarization from rough-surface scattering reduces the

SNR by 50% [67] and the pixel modulation transfer function (MTF) reduces the SNR

by approximately 66%[68], yielding a mixing efficiency of 33%. Even with highly

efficient focal plane arrays (FPAs) and highly transmissive optics, the ideal, total-

system efficiency is generally below 30%. This last statement also assumes ideal laser

coherence and noise, providing an upper bound on the total-system efficiency one can

expect from a DH system.

While SNR measurements of coherent-lidar systems are available [69, 70, 71], there

are distinct differences between these and the SNR measurements associated with DH

systems. For example, DH uses spatial modulation, while coherent lidar uses tempo-

ral modulation. Since the demodulation techniques are different, some of the system

efficiencies are different. To our knowledge, there has not been an examination of

the system efficiencies associated with a DH system. Therefore, this paper presents a

comparison between the expected and measured SNRs, a quantification of the major

system efficiencies, and an examination of excess-noise sources all with respect to our

DH system under test. In what follows, Section 4.2 provides the closed-form expres-

sions needed for a comparison between expected and measured SNRs, Section 4.3

provides an overview of the experimental methods and data processing, Section 4.4

provides the results presented with discussion, and Section 4.5 provides a conclusion.
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4.2 Closed-form expressions for SNR

In this section, we present the details associated with closed-form expressions for

the SNR associated with DH in the off-axis image plane recording geometry (IPRG).

Figure 4.1 shows an illustration of a DH system in the off-axis IPRG. Note that the

detailed development of these closed-form expressions can be found in [23] and [72].

Also note that we experimentally measure the SNR in the next section to analyze the

validity of our model and our assumptions.

4.2.1 Estimated signal and noise variance

Recall that we illustrate and explain DH in the off-axis IPRG in Fig. 4.1. At the

FPA, the signal and reference interfere to produce the hologram irradiance, iH , such

that

iH (x, y) = |US (x, y) + UR(x, y)|2 , (4.1)

where US and UR are the complex-optical fields of the signal and reference, respec-

tively. In units of Watts per square meter, iH is spatially continuous and real valued.

Throughout the remaining analysis, we assume that the reference uniformly illumi-

nates the FPA, such that |UR(x, y)|2 = |AR|2, where AR is the complex amplitude of

the reference.

Provided Fig. 4.1, the FPA records the hologram on an M × N array of pixels

as a per-pixel mean number of hologram photoelectons, mH(x, y), in units of pho-

toelectrons (pe). In turn, we model the noise as being additive with variance σ2
n.

We then digitize the hologram with a corresponding pixel gain, gA/D, to produce the

digital hologram with noise, d+
H(x, y), in units of digital numbers (DN). Then, we

demodulate the hologram, as illustrated and explained in Fig. 4.2.

After the demodulation process, we ideally obtain our estimated signal, ÛS. In
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Figure 4.1. A DH system in the off-axis IPRG. Here, we split the light from the master
oscillator (MO) laser into two paths: the illuminator and local oscillator (LO). Given
the illuminator, we illuminate an object with an optically rough surface, and we collect
the scattered speckle in a pupil given the appropriate receiver optics. Denoted as the
signal complex-optical field, US, the pupil focuses the received speckle onto the FPA. In
the other path, the LO provides the reference complex-optical field, UR, and we inject
the LO off axis in the pupil plane at (xR, yR) to illuminate the FPA.

particular,

ÛS (x, y) =gA/D
tip

2

hν
U∗RUS (x, y)

+ gA/D
π

4q2
I

σn(x, y)√
2
Nk (x, y) ,

(4.2)

where ti is the integration time, p is the square-pixel width, h is Planck’s constant,

ν is the MO laser frequency, qI is the image-plane sampling quotient, σ2
n is again

the total-noise variance, and Nk is the kth realization of circular-complex Gaussian

random numbers with zero mean and unit variance for both the real and imaginary

components (hence the
√

2 factor). In Eq. (4.2), qI represents the number of circular-

pupil diameters across the Fourier plane. Additionally, qI represents the number of

pixels across the halfwidth of the Airy disk, such that

qI =
λzI
pdp

, (4.3)

where λ is the MO laser wavelength, zI is the image distance, and dp is the pupil

diameter. Therefore, the factor of π/4q2
I accounts for the portion of the noise win-
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dowed from the Fourier plane. To account for σ2
n, we include the shot noise from the

reference and signal, in addition to the read noise with variance, σ2
r , viz.

σ2
n(x, y) = mR +mS(x, y) + σ2

r , (4.4)

wheremR is the mean number of reference photoelectrons andmS(x, y) is the per-pixel

mean number of signal photoelectrons. Note that the shot noise from the reference

is not spatially varying, since we have assumed a uniform reference. We neglect

quantization noise, since it is typically much less than σ2
r for high-bit-depth FPAs.

Other noise sources exist [28, 26], but we assume they are also negligible.

4.2.2 Signal-to-noise ratio

In the analysis that follows, we make use of the power definition for the signal-to-

noise ratio, S/N , such that

S/N (x, y) = ηT

E
{∣∣∣ÛS (x, y)

∣∣∣
2
}

V
{
ÛS (x, y)

} , (4.5)

where ηT is the total-system efficiency, E{·} is the expectation operator, and V{·} is

the variance operator. Provided Eq. (4.2), the numerator follows as

E
{∣∣∣ÛS (x, y)

∣∣∣
2
}

= g2
A/D mS (x, y)mR, (4.6)

and the denominator follows as

V
{
ÛS (x, y)

}
= g2

A/D

π

4q2
I

σ2
n (x, y) . (4.7)
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Substituting Eq. (4.4) into Eq. (4.7), S/N becomes

S/N (x, y) = ηT
4q2
I

π

mS (x, y)mR

mR +mS (x, y) + σ2
r

. (4.8)

When we assume a strong reference, mR � mS(x, y) and mR � σ2
r , and we reach the

shot-noise limit, such that

S/N (x, y) ≈ ηT
4q2
I

π
mS (x, y) . (4.9)

Similarly, we can derive the ideal, radiometric SNR, S/NR. Using [72], we obtain the

following closed form expression:

S/NR (x, y) =
ρ

π

λ2ti
hν

Po (MTxo,MTyo)

Ao
, (4.10)

where ρ is the surface reflection coefficient, the factor of π accounts for the Lambertian

scattering, the factor of λ2 accounts for the speckle [67], Po is the power incident on

the object, Ao is the area of the uniform object, and the coordinates (MTxo,MTyo)

are the magnified object-plane coordinates to convert to image-plane coordinates.

Note that we can derive Eq. (4.10) from Eq. (4.9) with the proper radiometry and

geometric- or ray-optics substitutions to satisfy imaging. Also note that we will use

Eq. (4.10) in the analysis that follows as the expected SNR without multiplicative

losses. The ratio of S/NR with our measured SNR, S/N ′, will then enable us to

calculate ηT .
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|AR|2

−0.5 0 0.5
−0.5

0

0.5

xR

λzI

yR
λzI

fx[1/p]

f y
[1
/p

]

Fourier Plane
d̃+H (fx, fy)

−0.5 0 0.5
−0.5

0

0.5

fx[1/p]

f y
[1
/p

]

Pupil Plane
̂̃
US

(
fx − xR

λzI
, fy − yR

λzI

)

−N/2 0 N/2− 1
−M/2

0

M/2− 1

x[p]

y
[p
]

Image Plane
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Figure 4.2. An illustration of the demodulation process for a digital hologram. The
reference spatially modulates the signal (see the far-left fringes on top of the square
image) and the FPA records the digital hologram with noise (i.e., d+H). Next, we perform

an inverse discrete Fourier transform, DFT −1, on d+H , which produces d̃+H in the Fourier
plane (magnitude shown). Four terms arise in the Fourier plane: a strong DC term from

the reference irradiance (i.e., |AR|2); the autocorrelation of the pupil, ŨS ∗∗ŨS (centered

at DC), which produces a 2D chat profile [73]; the signal complex-optical field, ŨS
(shifted off-axis), since the image and pupil planes are Fourier-transform pairs; and

the conjugate of the signal complex-optical field, Ũ∗S (shifted off axis in the opposite
direction), since the Fourier transform has Hermitian symmetry. We then shift and

window the Fourier plane to obtain the estimated signal,
̂̃
US, in the pupil plane. Lastly,

we preform a discrete Fourier transform, DFT , to obtain the estimated signal, ÛS, in
the image plane (magnitude shown).

4.2.3 System Efficiencies

To account for the expected total-system efficiency, ηT , we comprise ηT in terms

of several independent system efficiencies, viz.

ηT (x, y) = ηtηqηmηRηS (x, y) . (4.11)

Here, ηt is the transmission efficiency (atmospheric and optical), ηq is the quantum

efficiency of the FPA, ηm is the mixing efficiency, ηR is the reference-noise efficiency,

and ηS(x, y) is the signal-noise efficiency. The mixing efficiency represents how well

the detected reference and signal interfere to produce the spatial modulation known

as fringes. It is compromised of two other efficiencies: the polarization efficiency,

ηp, and spatial-integration efficiency, ηs. In what follows, we assume that there is

the ideal temporal coherence between the signal and reference, otherwise, non-ideal

coherence would factor into ηm.
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Recall that the signal becomes fully depolarized via rough-surface scattering from

our optically rough object, which we assume is comprised of a dielectric material.

Therefore, only half of the signal interferes with the polarized reference [67], so that

ηp = 50%. The spatial-integration efficiency accounts for the detection of the spatial

modulation with finite pixels. Using [24], we can mathematically realize the pixel-

spatial integration of the hologram irradiance as a 2D convolution of the hologram

irradiance with the spatial extent of the pixel. In the Fourier plane, this convolution

turns into a multiplication with the pixel MTF. Given a square pixel, we estimate

the pixel MTF with a 2D sinc function, where sinc(x) = 1 when x = 0 and sinc(x) =

sin(πx)/(πx) when x 6= 0. We, in turn, approximate ηs as

ηs =
〈
w (fx, fy) sinc2 (p fx, p fy)

〉
, (4.12)

where w (fx, fy) is the window function for the pupil in the Fourier-plane coordi-

nates (fx, fy) and 〈·〉 denotes spatial average. Note that the pixel MTF is squared

because of our SNR definition [cf. the sinc-squared term in Eq. (4.12)]. Also note

that the value of ηs is dependent on the pupil-window size and pupil location in the

Fourier plane. For example, our experiment had a qI = 2.70 and the pupil centered

at (fx, fy) = (xr/λzI , yr/λzI) = (0.25, 0.26), which yields an ηs = 64.4%.

In Eq. (4.9), we assume the use of a uniform, strong reference with Poisson-

distributed shot noise. However in practice, the reference is not spatially uniform

and single-mode lasers typically have some excess amplitude noise [74, 75]. Thus, we

include the reference-noise efficiency, ηR, which is the ratio of reference shot noise

(i.e., mR) to the demodulated-reference noise.

We also quantify the strong-reference approximation in Eq. (4.9) by introducing

the signal-noise efficiency, ηS (x, y). At high SNRs, the strong-reference approxima-

tion becomes less valid with a stronger signal. Not only does the signal shot noise

57



www.manaraa.com

increase, but the amplitude of the pupil autocorrelation in the Fourier plane in-

creases, which is sampled by the window function (cf. Fig. 4.2), and provides excess

signal shot noise. Therefore, as the signal and SNR increases, the strong-reference

approximation weakens. We quantify the excess signal noise with the signal-noise

efficiency, ηS, which is the ratio of the demodulated-reference noise to the sum of the

demodulated-reference and demodulated-signal noises.

Before moving on to the next section, we first report the initial-expected values

for the various system efficiencies in Table 4.1. Assuming ideal coherence between

the signal and reference, ηm = 32.2%, since ηp = 50% and ηs = 64.4%. In addition,

we assume no excess noise from the reference, signal, or other noise sources, which

allows us to simplify the SNR expression [cf. Eq. (4.8)] to be dependent only on the

signal [cf. Eq. (4.9)]. The same goes for the radiometric SNR [cf. Eq. (4.10)].

Table 4.1. Expected system efficiencies

Name Value Source
transmission, ηt 99.7% Vendor

quantum, ηq 83% Vendor
mixing, ηm 32.2% Eq. (4.12) & ηp = 50%

reference noise, ηR 100% Ideal [cf. Eq. (4.4)]
signal noise, ηS 100% Ideal [cf. Eq. (4.9)]

total, ηT 27.5% Calculated

4.3 Experimental methods and data processing

This section describes the experimental methods and procedures used in this pa-

per. In order to compare the recorded data to our model, we performed the appropri-

ate data processing in order to quantify the system efficiencies or multiplicative losses

associated with our closed-form expressions for SNR. Recall that we formulated these

expressions and multiplicative losses in the previous section [cf. Eqs. (4.9) - (4.11)].
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4.3.1 Experimental setup
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Figure 4.3. The experimental setup for our DH system under test.

As depicted in Fig. 4.3, we implemented a DH system in the off-axis IPRG. The

MO laser was a Cobalt Samba 1000 continuous-wave diode pumped solid state laser

with a wavelength of 532.1 nm, a linewidth of < 1 MHz, and an output power of 1 W.

The MO laser output beam was nearly Gaussian (M2 < 1.1) and collimated (full-

angle divergence < 1.2 mrad) with a diameter of 700µm at the laser-exit aperture.

A Faraday isolator (FI) prevented back reflections from getting back into the MO

laser, and a half-wave plate (HWP) and polarizing beam splitter (PBS) split a por-

tion of the MO laser to a beam dump (BD), allowing us to adjust the MO laser’s

power. Another HWP and PBS split the MO laser into two paths for the LO and

illuminator. To create the LO, we rotated the incident linear polarization state with

a HWP to match the stress-rod orientation of the polarization-maintaining fiber be-

fore coupling with the appropriate optics. We adjusted the illuminator-path strength

with a neutral density (ND) filter and directed it through a 20x beam expander to

illuminate a sheet of Labsphere Spectralon with an approximate 4 cm spot diameter.

The rough-surface scattering that resulted was approximately Lambertian with 99%
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reflectivity. As such, to create new speckle realizations, we placed the sheet of Lab-

sphere Spectralon on a tilted rotation stage.

A 1-inch lens with a focal length of 350 mm imaged the scattered-signal light

(with an object distance of 2.46 m) to a monochrome Point Grey Grasshopper3 cam-

era. The lens had a 532 nm anti-reflective coating and a transmission of 99.7%.

We injected our LO near the lens and angled it such that we centered the result-

ing fiber-reference light near the center of the FPA. This geometry gave a measured

qI = 2.70 with the lens nearly centered in the top right quadrant of the Fourier plane

at (fx, fy) = (xR/λzI , yR/λzI) = (.25, .26), since (xR, yR) = (1.56 cm, 1.62 cm).

To mitigate vibrational effects, we placed the entire experimental setup on a float-

ing optical table. In turn, we verified the MO laser linewidth was < 1 MHz with a

Fabry-Perot (FP) interferometer with a free spectral range of 1.5 GHz, a finesse of

> 1500, and a spectral resolution of also < 1 MHz. Next, we measured the full width

at half max to be about 1.2 MHz of an approximate Lorentzian profile. Since the

observed lineshape is the convolution of the FP and laser lineshapes, this measure-

ment agreed with the manufacture’s specified linewidth and coherence length. The

path difference between the signal and reference was 0.1 m, and we therefore as-

sumed negligible coherence losses. In addition, the variation in laser power was < 1%

with a power-meter measurement. We also conducted the same measurement for the

fiber-reference light and we observed similar results. Furthermore, we verified the

polarization of the signal and reference. We measured the fiber-output polarization

with a polarizer and two power meters over an hour and it was > 99% polarized.

Measuring the scattered-signal light reflected from the Spectralon in the same way,

and we found that it was > 99% unpolarized.

The Grasshopper3 camera (GS3-U3-32S4M-C) was a 2048 x 1536 CMOS array

with a specified 100% fill-factor and 3.45µm square pixels. The camera had two cover
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glasses, where the transmission losses were incorporated into the ηq specification (cf.

Table 4.1). We used the camera in mode 7, which has a ηq = 76%, but we removed

the front cover glass to reduce the reference etaloning effects. The cover glass had

a transmission of 91.7%, which gave an effective quantum efficiency of ηq = 83% for

the camera. We recorded frames of data using Matlab. Along with the floating op-

tical table, we set the camera integration time to 1 msec, which stabilized our SNR

measurements. The camera-pixel gain was 1/0.17, which converts the received photo-

electrons to 16-bit digital numbers on the camera [76]. We used camera mode seven,

which converts the 16-bit digital numbers to 12-bit digital numbers and Matlab reads

the pixel values as 16-bit digital numbers. Therefore, the first four bits of the recorded

16-bit digital numbers are padded. This outcome translates to a quantization-noise

variance of σ2
q = 21.3DN2. Note that the read-noise variance for mode 7 was about

5.5 pe2 or 189.5DN2, and the pixel well depth was 10, 482 pe. The reference strength

was set to approximately 2, 500 pe or about a quarter of the pixel-well depth.

To perform speckle averaging, we rotated the Labsphere Spectralon stage between

the recording of the hologram and signal frames to obtain different speckle realiza-

tions. We recorded twenty speckle realizations and twenty shot-noise averaging frames

for each speckle realization, totaling 400 hologram and signal frames for each dataset.

Additionally, we recorded 100 reference and 100 background frames for each dataset.

In total, we collected six datasets with different signal strengths while approximately

maintaining the fiber-reference-light and background-light levels.

4.3.2 Data processing

We show example recorded and demodulated frames in Fig. 4.4. Here, we demod-

ulate each recorded frame according to Fig. 4.2 in MATLAB. We also demodulated

the background frames. In turn, we calculated the frame-averaged background frame

61



www.manaraa.com

2000 pe 2500 pe 3000 pe -30 dB -15 dB 0 dB 0 kpe2 150 kpe2 300 kpe2

(a) (b) (c)

2000 pe 2500 pe 3000 pe -30 dB -15 dB 0 dB 250 pe2 375 pe2 500 pe2

(d) (e) (f)

0 pe 150 pe 300 pe -30 dB -15 dB 0 dB 0 kpe2 1.5 kpe2 3 kpe2
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Figure 4.4. Each plot is from dataset 5, where mS = 96 pe, and represents the full
frame. Here, (a) shows a single hologram frame, (b) shows the mean hologram energy
in the Fourier plane, (c) shows the mean hologram energy in the image plane EH(x, y),
(d) shows the mean number reference photoelectrons mR(x, y), (e) shows the mean
reference energy in the Fourier plane, (f) shows the mean reference-noise energy in the
image plane ER(x, y), (g) shows the mean number signal photoelectrons mS(x, y), (h)
shows the mean signal energy in the Fourier plane, and (i) shows the mean signal-noise
energy in the image plane ES(x, y). Note that the first and third columns have square
pixels with a rectangular array, which gives rise to rectangular pixels with a square
array in the second column.
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(i.e., mB(x, y)) and subtracted it from the reference and signal frames prior to de-

modulation to eliminate background noise. We did not modify the hologram frames

with background subtraction, so the spatial modulation was not altered. Then, we

converted each frame from DN to pe using the manufacturers specification for gain:

gA/D = 1/0.17. Since the gain cancels out in Eq. (4.9) and is in terms of pe, this con-

version provided a better comparison between the recorded frames and demodulated

energies. We did not perform any non-uniformity correction since the pixel-to-pixel

performance variation was likely averaged out with the 3.2 mega-pixel array. Table

4.2 shows the pixel- and frame-averaged values for the background, signal, reference,

and hologram number of photoelectrons (i.e., mB, mS, mR, and mH , respectively).

We defined the pupil window in the Fourier plane by using the definition of the

image-plane sampling quotient qI [cf. Eq. (4.3)]. In addition, we used the same

pupil window to demodulate the reference, signal, and background frames. We then

averaged the frames associated with the squared magnitude of the demodulated holo-

gram, reference, signal, and background frames, which yielded the mean hologram

energy, EH(x, y), mean reference-noise energy, ER(x, y), and mean signal-noise en-

ergy, ES(x, y). As such, the mean total-noise energy, EN(x, y), was the sum of the

our mean noise energies, such that EN(x, y) = ER(x, y) + ES(x, y), and Table 4.2

provides pixel-averaged values for these noise energies. Note that we excluded the

background noise energy from EN(x, y) because it was insignificant.

4.3.3 Signal fit

Figure 4.5 shows the radial profile of the per-pixel mean number of signal photo-

electrons, mS(x, y), for the six datasets provided in Table 4.2. For comparisons to the

radiometric SNR [cf. Eq. (4.10)], we needed a profile for the signal to estimate the

power at the object, Po. For this purpose, we considered the signal’s speckle noise.

63



www.manaraa.com

Table 4.2. Pixel- and frame-averaged values with respect to the six datasets.

dataset 1 2 3 4 5 6
mB [pe] 0.17 0.16 0.16 0.17 0.16 0.18
mS [pe] 4.0 10.3 15.5 54.2 96.3 230
mR [pe] 2,509 2,576 2,572 2,548 2,560 2,536
mH [pe] 2,511 2,583 2,584 2,601 2,661 2,764

ES [pe2] 0.6 5.9 13.4 157 527 2,523

ER [pe2] 375 369 360 365 375 358

EN [pe2] 375 375 374 522 901 2,881

EH [pe2] 2,494 9,460 14,598 51,873 88,159 209,920
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Figure 4.5. The azimuthal average of mS for the six datasets.

The speckle area was approximately 9.7 p2 with a measured squared speckle contrast,

C2 (i.e., the ratio of the pixel variance to the squared mean), of approximately 0.45,

which was within 1% to Goodman’s theory [77]1 . Speckle averaging reduced the

measured C2 by approximately 80% to 0.024. Along with the smoothness of Fig. 4.5,

we concluded that speckle averaging was sufficient enough to fit a profile to mS(x, y).

With the above details in mind, we fit a 2D-Gaussian profile, G(x, y), to mS(x, y),

1Goodman uses the rms (or amplitude definition) of SNR and the speckle contrast is the inverse
of the SNR (i.e., the standard deviation to the mean). Since we used the power definition of SNR,
C2 enables a better comparison to our measurements.
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such that

G(x, y) = A exp

(
−1

2

[(
x− xc
σx

)2

+

(
y − yc
σy

)2
])

, (4.13)

where the fitting parameters were: A, the Gaussian amplitude; xc and yc, the Gaus-

sian center location; and σx and σy, the Gaussian widths in the x and y directions.

We provide some fit parameters of interest in Table 4.3, along with the r-squared

(r2) fitting metric. The reported uncertainty of each fit parameter was within a few

percent. We believe the stark difference of dataset 1’s (mS = 4.0 pe) fit parameters

was due to the wings of the beam being below the noise floor of the detector. In

addition, we believe the variations between datasets 2-5 was due to realignment with

the illuminator and beam expander between dataset collections. Figure 4.6 shows the

relative percent error in the fit for dataset 5, where mS = 96 pe. Here, we observed

some structure from an imperfect Gaussian beam, which we believe is due to minor

misalignment of the beam expander, the input beam diameter over filling the input

aperture of the beam expander, but not significant laser multi-modal behavior.

In what follows, we show multiple figures with azimuthally averaged measure-

ments (cf. Fig. 4.5). We performed the azimuthal averages with respect to the

normalized Gaussian radius, rG. Because of the slightly different x and y widths from

the tilted Labsphere Spectralon stage. We then normalized the radius to the x and y

half width at half max (HWHM), viz.

rG(x, y) =

√√√√
(

x− xc√
2ln(2)σx

)2

+

(
y − yc√
2ln(2)σy

)2

, (4.14)

where the factor of
√

2ln(2) converts σx,y to the HWHM. Therefore, rG = 1 corre-

sponds to the Gaussian profile at half the maximum value, which provides a spatial

comparison.
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Figure 4.6. The relative percent error of the fit for dataset 5, where mS = 96pe.

Table 4.3. Gaussian fit results with respect to the six datasets.

dataset 1 2 3 4 5 6
A [pe] 7.6 27.5 42.1 153 304 577
σx [p] 484 457 465 454 427 497
σy [p] 509 445 441 441 405 477

r − squared 0.53 0.90 0.90 0.90 0.92 0.88

4.3.4 Radiometric SNR

To calculate the radiometric SNR, S/NR, for the measured total-system efficiency,

we measured the power of the illuminator beam at the tilted Labsphere Spectralon

stage over a minute and took a picture of the power meter location with the FPA.

The power meter was a ThorLabs PM100D with S130C photodiode. It was 6 months

into the calibration lifespan of 2 years and had a vendor specified uncertainty of ±3%.

In MATLAB, we drew a mask over the detector area of the power-meter picture. We

then scaled G(x, y) based on the average power measurement and the mask to obtain

the spatial power distribution Po(x, y) in Eq. (4.10). Fig. 4.7 shows the azimuthally
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averaged S/NR for each of the six datasets. When compared to Fig. 4.5, the SNR’s

reported in Fig. 4.7 are almost an order of magnitude greater than the signal. This

outcome is because of the 4q2
I/π factor in Eq. (4.9), which was about 9.3.

4.4 Measurements, results, and discussion

In this section, we present three measured efficiencies: the mixing efficiency η′m,

which again is the product of the polarization efficiency, ηp, and spatial-integration ef-

ficiency, ηs; the reference-noise efficiency, η′R; and the signal-noise efficiency η′S. These

measured efficiencies refined our expected total system efficiency ηT for comparison

to our measured total system efficiency η′T . Additionally, we present results from a

previous experiment [68], where we corrected the camera integration time to 55µsec.

Appendix D contains additional details with respect to this previous experiment.

4.4.1 Measured mixing efficiency η′m

To determine η′m, we calculated the ratio of the hologram energy without noise to

the product of the mean number of signal and reference photoelectrons, such that

η′m(x, y) =
EH(x, y)− EN(x, y)

mR(x, y)mS(x, y)
. (4.15)

As a reminder, η′m represents how well the detected reference and signal interfere

and is the product of the polarization efficiency (ηp = 50%) and spatial-integration

efficiency (ηs = 64.4%). Additionally, η′m would capture any losses not quantified

earlier due to vibration or coherence effects, which we assume to be negligible in the

present analysis. Figure 6.3(a) shows η′m(x, y) for dataset 5, where mS = 96 pe, and

Figure 6.3(b) shows the radial profile of η′m for the six datasets.

In Fig. 4.8(a), we observed the measurement was noisy but uniform over the area
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Figure 4.7. The azmuthial average of S/NR for the six datasets.

of illumination. Furthermore, Fig. 4.8(b) shows the azimuthal average for the six

datasets, where we saw η′m was relatively constant for each dataset except for dataset

1. For dataset 1, mS = 4 pe and we determined that the FPA’s absolute sensitivity

threshold, where the camera SNR = 1, was 4 pe, so we recorded those signal frames

at the detection limit of the FPA. More importantly, datasets 2-6 were 4.6% greater

than the expected ηm of 32.2% from Section 4.2.3. Recall that we modeled the pixel as

an ideal square with an ideal-sinc MTF. Since our FPA used microlenses to achieve a

specified 100% pixel-fill factor, the ideal-sinc model MTF was different than expected.

This increase in η′m as compared to theory is fortunate, but shows that the pixel MTF

can vary ηs by 10%.

We show a summary of the pixel averaged η′m in Table 4.4. Here, we took the

pixel average over the area of illumination in the frame. We excluded dataset 1 from

the average because of the weak signal as mentioned before. In addition, we believe

the large standard deviations are from the different speckle realizations between the

recorded signal and hologram frames. The average η′m for datasets 5 and 6 (the two
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Figure 4.8. (a) The mixing efficiency η′m for dataset 5, where mS = 96 pe. (b) The
azimuthial average of η′m for each dataset with the expected value of 32.2% in the
black, dashed line.
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highest signal strengths) were about a percent less than datasets 2-4, which can also

be seen in Fig. 6.3(b). We suspected this outcome was due to pixel nonlinearity in

the signal frames. Thus, we used the results from datasets 2-6 to obtain an average

mixing efficiency of η′m = 36.8% ± 10.2% to incorporate into our estimated total-

system efficiency for comparison to our measured total-system efficiency.

4.4.2 Measured reference-noise efficiency η′R

We determined the reference-noise efficiency, η′R, as

η′R =
π

4qI

mR

ER

, (4.16)

where the factor of π/4qi again accounts for the ratio of the window area to the total

Fourier plane area, and the mR and ER quantities are both pixel- and frame-averaged

values (cf. Table 4.2). Recall that η′R represents excess reference noise, which means

the reference noise is greater than the shot noise. Table 4.4 contains the results from

each dataset.

The average η′R of 74.5% corresponded to the measured reference noise being

≈ 34% greater than the shot noise (i.e., 1/η′R). To further investigate the source of

this excess reference noise, we measured the per-pixel ratio of reference-light variance

σ2
R(x, y) to mR(x, y) and referred to as the shot-noise ratio. The average of this ratio

across all the pixels was 1.11, which demonstrates that the reference noise was 11%

greater than the shot noise. We also verified this outcome in the free-space beam

to rule out the LO fiber as the source. However, we found that the shot-noise ratio

increased > 2 times for shorter integration times < 1msec, where a temporal depen-

dence is indicative of laser-amplitude noise. For comparison to the other experiment

(cf. Appendix D), which used a different MO laser, η′R = 50%, and the average shot-

noise ratio was 1.36, where the integration time was 55µsec. However, the difference
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between our shot-noise ratio and ηR led us to believe some of the excess reference

noise arises from the demodulation process.

We initially assumed the nonuniformity in the reference was filtered in the Fourier

plane by the pupil window because it contained low spatial frequencies outside of

the window. However, the etalon pattern was still prominent in ER(x, y) [cf. Fig.

4.4(f)], and therefore we did not filter out all of the reference nonuniformity with our

Fourier-plane window. We also observed this etalon effect in the other experiment

(cf. Fig. D.1 in Appendix D). Therefore, we suspected the non-uniform reference

compounded the excess reference noise captured by η′R.

These results showed that the shot-noise limit assumption for the reference [cf.

Eq. (4.4)] can be insufficient. In the worst case, this efficiency loss can be as signifi-

cant as the polarization loss ∼ 50%. This efficiency can be improved upon with better

laser control electronics to reduce the laser-amplitude noise, choice of FPA integra-

tion time, anti-reflective coatings on the FPA cover glass, and other such measures

to reduce the reference-etalon effect.

Table 4.4. Mixing and reference-noise efficiency measurements

Pix. avg. ± st. dev.
dataset mS[pe] η′m η′R

1 4 31.2% ± 8.7% 71.8% ± 2.1%
2 10 36.8% ± 10.2% 74.9% ± 1.9%
3 16 37.3% ± 10.3% 76.5% ± 1.9%
4 54 37.8% ± 10.6% 74.8% ± 2.1%
5 96 36.1% ± 9.9% 73.3% ± 1.8%
6 230 36.1% ± 10.0% 76.0% ± 2.0%

Avg. 36.8% ± 10.2% 74.5% ± 2.0%
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Figure 4.9. (a) A calculated frame of the signal-noise efficiency η′S for dataset 5 where
mS = 96 pe. (b) The azimuthal average of η′S for each dataset.
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4.4.3 Measured signal-noise efficiency η′S

For the signal-noise efficiency η′S, we calculated the ratio of the reference noise

energy to the total noise energy, such that

η′S(x, y) =
ER(x, y)

EN(x, y)
. (4.17)

As a reminder, η′S represents the excess signal noise present in the signal-dependent

SNR expression [cf. Eq. (4.9)]. Note that if we had significant background noise,

detector noise, or other noise sources, then we could include the background noise

energy in EN(x, y) to capture other noise sources. We show the η′S measurement

for dataset 5, where mS = 96 pe, in Fig. 4.9(a) and a radial comparison of the six

datasets in Fig. 4.9(b).

In Fig. 4.9, we observed that η′S is inversely proportional with the Gaussian-

signal profile. When mR � mS, the signal shot noise was negligible as in dataset

1, where mS = 4 pe and η′S ≈ 100%. In the other datasets, we observed η′S was a

minor efficiency loss for datasets 2 and 3 (mS = 10 pe and 16 pe, respectively) and

became a major efficiency loss at the higher signal strengths (e.g., datasets 4-6, where

mS > 54 pe).

The majority of the excess noise came from the signal with the partially windowed

pupil autocorrelation in the Fourier plane. As the strength of the signal shot noise

increased, so did the strength of the pupil autocorrelation, which increased faster than

the signal shot noise. We show this outcome in Fig. 4.10, where we preformed a power

regression. On the log-log plot, we fit a line (y = mx+b) to the log10 of the data (i.e.,

ES vs mS), where the average residual was < 10%. The slope was m = 2.04 with a

y-intercept of b = −1.36. This result corresponded to a quadratic line y = 0.044x2 for

the data, which demonstrated that ES increased faster than the signal shot noise. As
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such, this quadratic relationship is sound because the pupil autocorrelation energy

is proportional to m2
S and the signal shot noise energy is proportional to mS. The

strong-reference assumption used in the closed-form SNR expression in Section 4.2,

where the total noise is dominated by the reference noise, becomes less valid when

mR . 100mS.

101 102
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104

y = 0.04x2
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E
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Figure 4.10. A power regression (dashed line) of mS vs ES showing the signal noise
energy ES was proportional to the square of the per-pixel mean number of signal
photoelectrons mS and not linear like shot noise.

4.4.4 Measured signal-to-noise ratio, S/N ′

We determined S/N ′ as the ratio of the hologram energy without noise to the

total noise energy, viz.

S/N ′(x, y) =
EH(x, y)− EN(x, y)

EN(x, y)
, (4.18)

where S/N ′ is equivalent to S/N [cf. Eq. (4.9)] when all of our assumptions are valid.

We show S/N ′(x, y) for dataset 5, where mS = 96 pe, in Fig. 4.11(a) and a radial
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comparison for the six datasets in Fig. 4.11(b).

We observed the curves in Fig. 4.11(b) were approximately Gaussian at the lower

signal strengths (datasets 1-3), but deviated from the Gaussian shape for the higher

signal strengths (datasets 4-6). As seen previously with η′S, ES became a considerable

noise source between datasets 3 and 4 (mS = 16 pe and 54 pe, respectively). This

outcome occurred when S/N ′ & 100, and the SNR drop was due to the excess signal

shot noise, as previously discussed in Sec. 4.4.3. This outcome illustrates that the

excess signal shot noise imposes an upper limit to the SNR, which was ≈ 140 from the

peak of dataset 4 in Fig. 4.11(b). Additionally, ηS could appear to be an overwhelming

efficiency loss, but it only becomes significant for high signal strengths where the SNR

is substantial. For example, in dataset 6, mS ≈ 577 (peak from the fit) and η′S ≈ 3%,

but the center of S/N ′ ≈ 50. While the SNR upper limit and ηS could appear to be

detrimental, we only need a SNR > 10 for applications like deep-turbulence wavefront

sensing [20, 21, 39].

4.4.5 Measured total system efficiency ηT

To determine η′T , we calculated the ratio of the SNRs, such that

η′T (x, y) =
1

η′S(x, y)

S/N ′(x, y)

S/NR(x, y)
. (4.19)

We included η′S(x, y) in Eq. (4.19) to counter the spatial- and signal- strength de-

pendence in the noise as seen in the measured SNR (cf. Sec 4.4.4). With this last

point in mind, we show η′T (x, y) for dataset 5, where mS = 96 pe, in Fig. 4.12(a).

The frame is mostly noisy in the center, but some similar structure exists towards

the wings of the Gaussian profile that we observed in the fit residuals (cf. Fig. 4.6).

We also did not observe any structure related to the non-Gaussian shape that we saw

in Fig. 4.11(a) with respect to the measured SNR. Recall that the ηS(x, y) factor
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Figure 4.11. (a) The measured SNR S/N ′ for dataset 5, where mS = 96 pe. (b) The
azmuthial average of S/N ′ for each dataset.

quantifies the spatial effects of the non-Gaussian shape.

Next, we show a radial comparison across the datasets in Fig. 4.12(b). In dataset
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Figure 4.12. (a) The total system efficiency η′T for dataset 5 where mS = 96 pe. (b) The
azmuthial average of η′T for each dataset.

1, where mS = 4 pe, we saw this calculation fall quickly from the Gaussian peak.

This outcome was due to the very weak signal, where the signal fell below the camera
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noise in the Gaussian profile wings. For the remaining datasets, the η′T radial average

exhibited a wave, which appeared consistent with the reference etalon pattern. We

had assumed our measured SNR was directly proportional to the signal strength,

which means we should have the same spatial distribution as the signal frame. The

non-uniform reference affected EH , as seen in Fig. 4.4(b), as compared to the average

signal frames in Fig. 4.4(g). This outcome led us to believe the non-uniform reference

has some effect on the SNR even with subtracting out EN and dividing out η′n, which

contains the spatial nature of the reference.

For a comparison to η′T , we updated Table 4.1, which contained our major system

efficiencies, with our measurements in Table 4.5. We excluded the signal-noise effi-

ciency η′S because we used it in Eq. (4.11). Multiplying all the efficiencies together

gave an ηT = 22.7%± 6.5%.

To compare to our expected ηT of 22.7%, we took a spatial average of the η′T (x, y)

frames from about rG = 0−1.5 for datasets 2-6 and rG = 0−0.5 for dataset 1, where

there was detectable signal for the measurement. We show the results in Fig. 4.13.

The error bars, whose widths are one standard deviation, are around 6 - 6.5%. Both

the measured and expected total-system efficiency’s uncertainty fall within a half of

the standard deviation. Across the six datasets, the average was η′T = 21.2% with

σηT = 6.3%. We presumed the minor differences between datasets were due to minor

laser or system fluctuations throughout the data collection, which occurred over sev-

eral hours in two days.

In the previous experiment (cf. Appendix D), we had a ηt = 99%, ηq = 50%,

ηm = 30.9%, and ηR = 50.0%, which yielded a ηT = 7.7% with an uncertainty of

1.1%. We took three datasets at mS = 13.9 pe, 32.3 pe, and 39.5pe. The measured

total-system efficiencies were η′T = 8.5%, 7.6%, and 7.2%. This outcome resulted in

an average η′T = 7.8% with ση′T = 2.9%. The major differences with this experiment
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Table 4.5. Updated system efficiencies

Name Value ± Uncertainty Source
transmission, ηt 99.7% ± 0.05% Vendor

quantum, ηq 83% ± 0.5% Vendor
mixing, η′m 36.8% ± 10.2% Table 4.4

reference noise, η′R 74.5% ± 2.0% Table 4.4
total, ηT 22.7% ± 6.5% Calculated
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Figure 4.13. Pixel averaged measured total system efficiency η′T for the six datasets,
where the width of the error bars represent the standard deviation, the dashed line
represents the expected value of 22.7% and the dotted lines are ±ση′T = 6.5%.

was a different vendor for the MO laser and more noise (cf. Table D.1 in Appendix

D). However, the results from two-separate experiments further supported that we

have quantified all of the major system efficiencies.
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4.5 Conclusion

In this paper, we showed that the major system efficiencies (multiplicative losses)

of our DH system under test were the mixing, reference-noise, and signal-noise effi-

ciencies (i.e., ηm, ηR, and ηS, respectively). From the collected experimental data, we

measured the following values for these efficiencies using a DH system in the off-axis

IPRG: η′m = 36.8%, η′R = 74.5%, and η′S = 3%− 100%. In turn, our measured value

of 36.8% for η′m was 4.6% higher than our expected value of 32.2% for ηm using an

ideal-sinc model for the pixel MTF. We suspected that our pixel MTF differs from

an ideal-sinc model because the FPA used microlenses to achieve a 100% pixel-fill

factor. Additionally, we found that the reference noise was about 34% greater than

that obtained with Poisson-distributed shot noise. Along with laser-amplitude noise,

we saw that the reference non uniformity compounds this excess noise. Next, we ob-

served that the signal-noise efficiency was dependent on the signal strength at higher

SNRs (e.g., an SNR > 100). Due to sampling of the pupil-autocorrelation term in

the Fourier plane, we saw that the demodulated-signal noise was proportional to the

square of the signal strength mS and increased faster than the signal shot noise.

With these efficiency measurements, we modified our expected total-system ef-

ficiency ηT from 27.5% to 22.7% (cf. Table 4.1 and 4.5). As such, we measured

the average total-system efficiency η′T = 21.1%, which was 1.6% less than expected.

These measurements fell within the error bounds of both the expected and measured

total-system efficiency. We also achieved similar results with the data from a previous

experiment, where the ηT was 7.7% and η′T was 7.8%.

Overall, our results show that reaching the ideal, mixing-efficiency limit for a

DH system is difficult without consideration of the excess signal and reference noise.

We can mitigate excess signal noise, in practice, by decreasing the Fourier-plane

sampling (qI & 4) and moving the pupil location further from the Fourier-plane cen-
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ter. However, when the excess signal noise becomes significant, the SNR & 100.

With deep-turbulence wavefront sensing, for example, we generally need a SNR >

10, and we desire maximum Fourier-plane sampling (2 . qI . 4). We should also

take precautions to increase the reference uniformity and reduce the laser-amplitude

noise to maximize the reference-noise efficiency. Therefore, the DH system efficiency

could approach the ideal mixing-efficiency limit under the strong-reference assump-

tion with highly transmissive optics, highly efficient FPAs, and a near-uniform and

low amplitude-noise reference.
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V. Digital holography experiments with degraded temporal
coherence

The contents of this chapter is a draft for submission to the Holography special

section of Optical Engineering [78].

To simulate the effects of multiple-longitudinal modes and rapid fluctuations in

center frequency, this paper uses sinusoidal phase modulation and linewidth broad-

ening, respectively. These effects allow us to degrade the temporal coherence of our

master-oscillator laser, which we then use to conduct digital holography experiments.

In turn, our results show that the coherence efficiency decreases quadratically with

fringe visibility and that our measurements agree with our models to within 1.8% for

sinusoidal phase modulation and 6.9% for linewidth broadening.

5.1 Introduction

Recent results show that digital holography (DH) is an enabling technology for

tactical applications, such as deep-turbulence wavefront sensing [20, 21, 39] and long-

range imaging [79, 80, 17]. By flood illuminating a distant object and interfering the

scattered signal with a local reference, we can reconstruct the amplitude and phase of

the complex-optical field. Furthermore, we can approach the shot-noise limit, given

a strong reference [81]. Recent experiments quantified the validity of this last state-

ment in terms of system efficiencies [65]. While these experiments showed that DH is

robust against weak signals often encountered in tactical applications, they assumed

the use of fully coherent laser sources when formulating closed-form expressions for

the signal-to-noise ratio (SNR).

With coherence in mind, Mandel evaluated the temporal coherence requirements

for analog holography in 1966 [82]. From this foundational work, Harris et al. stud-

ied the role of coherence length in continuous wave (cw) coherent-lidar systems [83].
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Recall that coherent lidar uses temporal modulation, whereas DH uses spatial modu-

lation. Because of this difference, cw coherent-lidar systems can operate with ranges

many orders of magnitude beyond the coherence length of the master-oscillator (MO)

laser [84, 85, 86]. In contrast, DH systems cannot, since the hologram interference

fringes wash out when the path length differences between the signal and reference

are greater than the coherence length of the MO laser.

Claus et al. studied the coherence requirements associated with cw DH systems

but with near-equal path lengths between the signal and reference [87]. In contrast

to digital-holographic microscopy, where short laser coherence lengths enable three-

dimensional imaging [5], the effective ranges for tactical applications becomes limited

by both the coherence length and the signal strength. With this last point in mind,

Marron et al. successfully conducted field experiments with a DH system using a co-

herence length >200 m and a range of 100 m [10]. It is unclear, however, whether the

path length difference between the signal and reference reduced the fringe visibility,

since this detailed information is absent from Ref. [10], in addition to an estimate of

the system efficiencies (multiplicative losses), which degrade the achievable SNR.

From our work in Ref. [65], we know that the ideal total-system efficiency be-

comes limited to about 30%. This limit is primarily due to depolarization from rough

surface scattering and the pixel modulation transfer function. Other efficiencies, in-

cluding those caused by excess reference and signal noise, can further degrade the

fringe visibility. On top of these system efficiencies, several independent phenomenon

(not studied in Ref. [65]) can further degrade the temporal coherence of the MO

laser, and subsequently, the fringe visibility of a DH system. For example, increasing

the integration time on the focal-plane array (FPA) can reduce the fringe visibility

due to fluctuations in the center frequency of the MO laser. High-power laser sources

can also exhibit time-evolving longitudinal modes, leading to degraded temporal co-
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herence. In our opinion, these independent phenomena have largely been ignored in

previous studies and leads us to the DH experiments presented here.

This paper explores the effects of degraded temporal coherence, given a DH sys-

tem in the off-axis image plane recording geometry (IPRG). To degrade the temporal

coherence of our MO laser, we use two approaches: sinusoidal phase modulation and

linewidth broadening. The sinusoidal phase modulation produces spectral side bands

and allows us to simulate the effects of multiple-longitudinal modes in our MO laser.

Phase modulation via pseudo-random bit sequences (PRBS) then allows us to broaden

the linewidth of our MO laser and simulate the effects of rapid fluctuations in the

center frequency. Before moving on to the next section, it is worth mentioning that

the experimental setup used here may also enable the characterization of high-power

fiber lasers, where one might broaden the linewidth of the seed to reduce the effects

of stimulated Brillouin scattering [88, 89].

In what follows, we show that the coherence efficiency depends on the square of

the complex-degree of coherence (Sections 5.2-5.4). In Section 5.2, we develop the

relationship between coherence efficiency and the complex-degree of the coherence,

whereas in Section 5.3, we describe our experimental setup and how we measure the

coherence efficiency. Section 5.4 follows with analysis and results of the measured and

modeled coherence efficiency. Last, Section 5.5 provides a conclusion for this paper.

5.2 Coherence efficiency, ηc

With DH, we interfere the signal with a reference, and we demodulate the re-

sulting digital hologram to obtain an estimate of the amplitude and phase of the

complex-optical field. As such, the instantaneous hologram irradiance, iH , is the

square magnitude of the sum of the signal complex-optical field, US, and reference
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complex-optical field, UR, such that

iH(t, τ) = |UR(t)|2 + |US(t+ τ)|2

+ U∗R(t)US(t+ τ) + UR(t)U∗S(t+ τ),

(5.1)

where t is time, τ is the time delay between the signal and reference, and ∗ denotes

complex conjugate. For simplicity in the notation, Eq. (5.1) neglects any spatial de-

pendencies. Here, we assume that the instantaneous reference irradiance (first term)

is spatially uniform and that the instantaneous signal irradiance (second term) is

negligible given a strong reference and a weak signal. The third and fourth terms

involving US have the important spatial content. For example, with the tilted refer-

ence provided by an off-axis local oscillator (LO), the third and forth terms of Eq.

(5.1) produce the spatial fringes in iH and shift these terms away from DC in the

spatial Fourier domain of iH . With these shifts in mind, we window the third term

in the spatial Fourier domain and transform back to the spatial domain to obtain an

estimate ÛS. The precision of ÛS depends on the SNR of the DH system.

As with previous works, we use the power definition of the SNR, S/N [65], such

that

S/N = ηT
4q2
I

π

mRmS

mR +mS

, (5.2)

where ηT is the total-system efficiency, 4qI/π is the noise compression factor, and mR

and mS are the mean photoelectron count for the reference and signal, respectively.

In practice, mR and mS follow as

mR =
tip

2

hν

〈
|UR(t)|2

〉
and mS =

tip
2

hν

〈
|US(t+ τ)|2

〉
, (5.3)

where tip
2/hν is the irradiance to photonelectron conversion factor (assuming the

quantum efficiency is 100%) and 〈·〉 denotes a time average that is much longer than
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the temporal period of the MO laser. In the last term of Eq. (5.2), the numerator

is the heterodyne energy and the denominator is the noise energy. With respect to

the noise energy, we include only the shot noise associated with the reference and

signal and assume other noise sources, such as background noise and FPA read noise,

are negligible. Furthermore, ηT contains all the system efficiencies (multiplicative

losses) that degrade the fringe visibility, such as optical transmission losses through

the atmosphere and receiver optics, the quantum efficiency of the FPA, the mixing

efficiency of the signal and reference, etc. [65].

The mixing efficiency is how well the detected reference and signal interfere, and

thus produce fringes. For example, phenomenon like rough-surface scattering from a

dielectric object depolarizes the signal and decreases the mixing efficiency by 50%,

thus decreasing the visibility of the fringes. A degradation in temporal coherence also

leads to a reduction the fringe visibility. Given a cw laser source, the fringe visibility

is equivalent to the magnitude of the complex-degree of coherence γ(τ) [37], which

we can calculate in terms of US and UR, viz.

γ(τ) =
〈US(t+ τ)UR(t)∗〉
〈US(0)U∗R(0)〉 , (5.4)

where 〈·〉 represents a time average that is much longer than the temporal period of the

laser. The numerator of Eq. (5.4) represents a cross correlation and the denominator

normalizes γ. Thus, the magnitude of γ is a measurable quantity ranging from γ = 1

(ideal coherence) to γ = 0 (incoherent).

The heterodyne energy in Eq. (5.2) assumes ideal coherence between the reference

and signal. To quantify the coherence effects in terms of a multiplicative efficiency

factor for in the total-system efficiency, ηT , we introduce the coherence efficiency, ηc.

Since we use a power definition for SNR, S/N , the complex degree of coherence, γ,
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relates to ηc as

ηc(τ) = |γ(τ)|2 . (5.5)

Therefore, the S/N and heterodyne energy is proportional to the square of the fringe

visibility. Note that this outcome is the same conclusion as Goodman for the ampli-

tude interferometer [36]. For example, say the MO laser has a Lorentzian spectrum

and the time delay τ between the reference and signal is equal to the coherence time,

τc, (as defined by Mandel [38]). The MO laser spectrum (i.e., the power spectral

density) and γ are Fourier transform pairs via the Wiener-Khinchin theorem [36];

thus, γ is a decaying exponential. This example results in γ = 0.368, ηc = 13.5%,

and the DH heterodyne energy and S/N reduces by 86.5%. In terms of the effective

range of a practical DH system, here, the path length difference between the reference

and signal, ∆`, corresponds to the coherence length ,`c, where `c = τcc and c is the

speed of light. Therefore, operating a DH system at ∆` ≥ `c is detrimental to the

achievable SNR and limits the effective range to . `c/2, assuming the signal travels

much further to the object and back as compared to the reference.

5.3 Experimental methods

The goal of the experiments presented here was to manipulate the MO laser spec-

trum with different phase modulation schemes and to quantify the temporal coherence

effects in DH by measuring the coherence efficiency, ηc. To that end, we provide the

details on the DH experimental setup and the ηc measurements in this section. This

work builds upon the results from Mao [90], which contains additional details.

5.3.1 Experimental set-Up

In our experiments, we setup our DH system in the off-axis IPRG as illustrated

in Fig. 5.1. Here, the MO laser was a Cobalt Samba 1000 cw diode pumped solid
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Figure 5.1. An overview of the experimental setup.

state laser with a wavelength of 532.1 nm, a linewidth of ¡ 1 MHz, a `c < 100 m, and

an output power of 1 W. We used a Faraday isolator (FI) to isolate the MO laser

from back reflections. To create the various optical trains found in Fig. 5.1, we used

pairs of half-wave (λ/2) plates between a polarizing beam splitter (PBS) to direct

(1) unneeded MO laser power to a beam dump (BD), (2) to a fiber coupler (FC)

for the reference, and (3) to a Fabry-Perot (FP) interferometer. The λ/2 plates also

allowed us to match polarization to the phase electro-optic modulators (θ EOM) and

the polarization-maintaining fiber for the reference.

To create the signal, we used a mirror (M) to steer the MO laser into a 20x beam

expander (BE) to illuminate a sheet of Lapsphere Spectralon. By design, the Spec-

tralon was 99% Lambertian and provided an optically-rough dielectric object. After,

we imaged the near-Gaussian spot scattered by the Labsphere Spectralon with a 1 in

lens onto a Grasshopper3 camera (GS3-U3-32S4M-C). Here, the object distance and

the focal length was 246 cm and 35 cm, respectively. To create the tilted reference,

we placed the off-axis LO next to the lens. Next, we flood illuminate the camera with

the tilted reference and collected digital holograms with a camera integration time
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of 250µsec. This integration time corresponds to a sampling frequency of 4 kHz and

is more than three orders of magnitude less than lowest phase-modulation frequency.

Therefore, we can safely assume our measurements were not dependent on the inte-

gration time.

The first phase EOM was a ConOptics 350-160 with a ConOptics 25D amplifier.

We converted it from an amplitude EOM by removing the output polarizer and align-

ing the laser polarization to one of the EOM crystals’ axis. This configuration gave a

half-wave voltage, Vπ, of 277 V at 532.1 nm. The 25D amplifier was a digital ampli-

fier with a bandwidth from DC - 30 MHz and maximum output voltage of 175 V. To

produce linewidth broadening on the MO laser, we used a PRBS input signal with a

bit length of 231 and frequencies from 15 MHz to 30 MHz. This broaden the MO laser

energy by 62-68%.

The second phase EOM was a ConOptics 360-40 with Vπ = 155 V at 532.1 nm.

We used a ConOptics 550 amplifier with this EOM, which had a bandwidth of 20-

500 MHz and maximum output of 125 volts peak-to-peak, Vpp. Using a sinusoidal

input signal, we generated sidebands on the MO laser with modulation frequencies of

20-100 MHz and adjusted the sideband amplitudes by changing the input signal Vpp.

To measure the optical spectrum of the phase modulated MO laser, we used a

ThorLabs SA30-52 Fabry-Perot interferometer with a finesse of 1500 and free-spectral

range (FSR) of 1.5 GHz, which provided a spectral resolution of <1 MHz. The MO

laser manufacturer specified linewidth was also <1 MHz. In turn, the FP mirrors

were scanned over a range >FSR so that two peaks appeared per scan to convert

the recorded FP signal time to relative frequency. We captured multiple scans on the

oscilloscope to average the FP output signal and lower the noise. Figure 5.2 shows the

averaged FP spectrum of the unmodulated MO laser spectrum fitted to a Lorentzian
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lineshape L(ν,∆ν) as defined as

L(ν) =
π

2

∆νL

(ν − ν0)2 +
(

∆νL
2

)2 , (5.6)

where ν is the MO laser frequency, ν0 is the center MO laser frequency, ∆νL is the full

width at half max (FWHM), and AL is the Lorentzian lineshape amplitude. From Fig.

5.2, we observed some minor higher-order modes hidden in the noise after averaging,

which we assumed to be from the FP alignment and not the MO laser. We chose to fit

a Lorentzian lineshape because the lineshape of an FP interferometer of high finesse

is well approximated by a Lorentzian lineshape [91] and we assumed the MO laser

lineshape was near Lorentzian lineshape [92]. The observed unmodulated FHWM

was ∆νL = 1.2 ± 0.05 MHz, which suggests the MO laser linewidth was narrower

than specified because the observed linewidth is equal to the sum of the FP and MO

laser linewidths. The FP manufacturer indicated that the typical best FP linewidth

was 700 kHz. With these points in mind, we used a ∆νL = 500 kHz for the ensuing

analysis with PRBS modulation.

5.3.2 Data measurements

To measure the coherence efficiency, ηc, for the different phase modulation schemes

and path length differences, we measured the heterodyne energy in the Fourier plane.

We maximized the heterodyne energy in the digital hologram by setting the reference

at 50% of the pixel full-well depth and increased the signal strength slightly below

pixel saturation. The unmodulated SNR was around 110-120 which gave us the

desired dynamic range for the measurements. On each digital hologram, we performed

an inverse discrete Fourier transform (DFT −1) and took the magnitude squared to

convert the Fourier plane to real-valued energy quantities. Then, we windowed the

total energy, ET , contained in the circular pupil in the Fourier plane as depicted
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Figure 5.2. The average unmodulated MO laser spectrum from the FP interferometer
(−) with a Lorentzian lineshape fit (−).
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Figure 5.3. The Fourier plane of (a) an unmodulated digital hologram and (b) a 20
MHz sinusoidal modulated digital hologram with ∆` = 3.1 m.
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in Fig. 5.3. However, this window contained noise in addition to the heterodyne

energy, EH . To estimate the noise energy, EN , we assumed that the Fourier plane

was symmetric and windowed an adjacent quadrant that did not contain a circular

pupil, also depicted in Fig. 5.3. Then, we flipped EN and subtracted EN from ET to

determine EH .

Because the strengths of signal and reference were not identical at each ∆`, we

collected 100 unmodulated digital holograms and 100 modulated digital holograms

at the various modulation frequencies. We then measured the relative coherence

efficiency η̂′c, which is the ratio of the modulated EH to the unmodulated EH0 , viz.

η̂′c(τ) =
EH
EH0

=
ηc(τ)

ηc0(τ)
, (5.7)

where η̂′c is also the ratio of the modulated ηc to the unmodulated ηc0 . Note that this

relationship creates a relative measurement because EH0 has a minor ηc loss due to

the path length differences. However, we did observe some minor reference power loss

when the phase EOMs were on. We suspect that this loss was due to a minor change

in the beam quality through the EOM crystal, which produced a fiber-coupling loss

for the reference. Therefore, we normalized the EH and EH0 measurements to the

mean hologram photoelectron count which countered the minor reference power loss.

5.4 Analysis and results

This section presents the analysis and results for the measured relative coherence

efficiency, η̂′c (cf. Eq. 5.7), with respect to the sinusoidal, PRBS, and combined phase

modulation schemes. Sinusoidal phase modulation produced sidebands on the MO

laser spectrum while PRBS phase modulation produced linewidth broadening. Phase

modulation, in general, is a non-linear process with respect to frequency [24]. As
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such, non-ideal hardware performance produced spectra different from expected. In

what follows, we first present the FP interferometer measurements, which we used to

more accurately represent the actual spectra for our model of η̂c, so that we could

compare to our measurements of η̂′c.

5.4.1 Sinusoidal modulation

To model the sinusoidal phase modulation, we represented the MO laser complex

field U(t) as a Bessel series [93], such that

U(t) =UoJ0(φ) cos [2πνot]

+ Uo

∞∑

k=1

Jk(φ){cos [2π (νo + kfm,s)]

+ (−1)k cos [2π (νo − kfm,s)]},

(5.8)

where Uo is the unmodulated MO laser amplitude, Jk is the sideband amplitude, φ is

the depth of phase modulation, ν0 is the MO laser frequency, and fm,s is the sinusoidal

phase modulation frequency. Note that Jk are Bessel coefficients of the first kind and

the sum of the squared Bessel coefficients equals 1 to conserve energy. Also note that

we assumed monochromaticity with the cosines in Eq. (5.8). We approximated the

sinusoidal phase modulated spectrum, Gs(ν), as

Gs(ν) =L (ν)
{
J2

0 (φ)

+
∞∑

k=1

J2
k (φ)[δ (νo + kfm) + δ (νo − kfm)]

}
,

(5.9)

where L(ν0) is the Lorentzian MO laser lineshape [cf. Eq. (5.6)] and δ(ν) is the unit

impulse function, which represents the phase modulation induced sidebands. Here,

we assumed that the cross-terms are negligible since ∆νL � fm.
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We collected data from fm,s = 20 - 100 MHz in five MHz steps at φ = 0.4π & 0.8π.

Figure 5.4 shows a few of the collected FP spectra for the sinusoidal phase modulation.

We observed that the sideband amplitudes did not align well with the theoretical

Bessel coefficients, were asymmetric, and varied measurably for each fm,s and φ. In

turn, we calculated the average absolute percent error of the sideband amplitudes,

∆Ak, as

∆Ak(φ) =
100

17

100MHz∑

fm,s=20MHz

1

2α + 1

α∑

k=−α

|Ak (fm,s, φ)− J2
k (φ)|

J2
k (φ)

(5.10)

where fm,s ranged from 20-100 MHz in 5 MHz increments, α is the number of side-

bands included (i.e., α = 2 for φ = 0.4π and α = 4 for φ = 0.8π), and A2
k was the

FP measured sideband amplitude. These calculations resulted in ∆Ak(0.4π) = 16%

and ∆Ak(0.8π) = 241%. We believe that this discrepancy is due to the non-ideal

performance of the hardware such as the input sinusoidal signal having some band-

width and not significant FP alignment errors. Therefore, we measured the sideband

amplitudes from the FP interferometer to substitute for the Bessel coefficients in the

η̂c model predictions. Each kth-order sideband had two FP amplitude measurements,

so we took the average of the two amplitudes for the corresponding Ak value.

Since G(ν) and γ(τ) are Fourier transform pairs, the γs for the sinusoidal phase

modulation resulted in

γs(τ, φ, fm,s) =e−π∆ντ {A0(φ, fm,s)

+2
∞∑

k=1

Ak(φ, fm,s) cos(2πkfm,sτ)

}
,

(5.11)

where Ak was the sideband amplitude measurements from the FP, the exponential

was from the unmodulated MO laser (i.e., the Lorentzian lineshape), and the cosine

was the result of the spectral shifts from the sidebands in Eq. (5.9). Put another way,
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Figure 5.4. The average FP spectra (−) of the sinusoidal phase modulated MO laser
at fm,s = 20 MHz in (a) and (b) and fm,s = 100 MHz in (c) and (d) with φ = 0.403π
in (a) and (c) and φ = 0.806π in (b) and (d). The theoretical Bessel amplitudes are
denoted as (−).

γs was a series of beating cosines resulting from the sidebands with an exponential

decaying envelope from the MO laser linewidth. Note that we normalized the Bessel

coefficients in Eq. (6.2) (i.e. 1 = J2
0 (φ) + 2

∞∑
k=1

J2
k (φ)). As such, we normalized the

measured A′ks in a similar fashion, which also normalizes γs(τ), so that the values

range from zero to one. Since the η̂′c measurements were relative [cf. Eq. (5.7)], our

model for η̂c,s(τ) was

η̂c,s(τ, φ, fm,s) =

{
A0(φ, fm,s) + 2

∞∑

k=1

Ak(φ, fm,s) cos(2πkfm,sτ)

}2

, (5.12)
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where the exponential from the unmodulated MO laser was divided out by EH0 . Note

thatη̂c,s shows our η̂′c,s was solely dependent on the sinusoidal phase modulation and

not the unmodulated MO laser linewidth.

Figure 5.5 shows η̂′c,s compared to η̂c,s [cf. Eq. (5.12)] with the FP measured

amplitudes (Ak) and the theoretical (Jk). We observed in Fig. 5.5 (a-b) that η̂′c ap-

proaches 0%, when the sidebands destructively interfere, and approaches 100%when

the sidebands constructively interfere, due to the beating sidebands [cf. Eq. (5.11)].

As we increased ∆`, the beating sidebands became more apparent as shown in Fig.

5.5 (c), where φ = 0.4π and ∆` = 22.4 m. We took advantage of this sinusoidal

structure to better determine the value of τ (i.e., τ = ∆`/c), since we had some

uncertainty to the value of τ for Eq. (5.12). This uncertainty was from the reference

fiber optical path length because we we didn’t have the exact refractive index value at

the MO laser wavelength. Therefore to estimate τ , we minimized the error between

the DH measured η̂′c and η̂c,s. The results yielded a ∆` = 3.1m for Fig. 5.5 (a -b)

and ∆` = 22.4m, which were within a few centimeters of the measured ∆` when

assuming the fiber’s refractive index ≈ 1.50. Note that this path length difference

measurements was also used for the PRBS phase modulation analysis.

The average absolute difference η̂′c,s and η̂c,s is shown in Table 5.1. We found that

our Ak’s improved η̂c,s ≈ 10% more for φ = 0.8π than for φ = 0.4π. This improve-

ment occurred not only because ∆Ak(0.4π) � ∆Ak(0.8π) �, but also because the

difference in the energy distribution to the sidebands for each φ [cf. Eq. (5.10)]. For

φ = 0.4π, & 90% of the energy was contained in the primary (k=0) and first-order

sidebands (k=1) for both the theoretical and measured spectrum. For φ = 0.8π,

. 50% of the energy is contained in the first-order sidebands (k=1) for the theoretical

spectrum as compared to & 70% of the energy for the measured spectrum. Therefore,

the differences in ∆Ak(0.8π) was more sensitive than for ∆Ak(0.4π) and our Ak’s
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provided a much better predictive model for η̂c,s.

The DH η̂c measurements in Fig. 5.5 had standard deviations of less than a

percent (hence the exclusion from the figures). Our analytic model η̂c,s agreed with

our η̂′c,s measurements to within 1.8%, which showed the accuracy of our methodol-

ogy. In practice, these results show the impracticality of multi-longitudinal mode MO

laser. If such a MO laser was used, the SNR would be extremely noisy with moving

object in tactical applications due to the beating sidebands and ηc fluctuating, even

at ranges within the coherence length `c.

5.4.2 PRBS modulation

A change in phase leads to a change in the instantaneous frequency δν, since

δν =
1

2π

dφ

dt
, (5.13)

where dφ/dt is the change in phase with respect to time. Eq. (5.13) shows that phase

fluctuations in the MO laser phase results in the frequency fluctuations too. If these

phase fluctuations occur on the order or greater than the MO laser natural line, then

the MO laser spectrum will be broadened. Therefore, by imparting deterministic,

rapid phase changes in the form of PRBS phase modulation, we partially broadened

the MO laser linewidth with a sinc2 spectral lineshape. The spectrum of the MO laser

with 15 MHz PRBS phase modulation is shown in Fig. 5.6. A fully broaden spectrum

was not achieved because we applied a random discrete phase shift ∆φ ≈ 0.6π, where

Table 5.1. The relative difference between η̂′c,s and η̂c,s from Fig. 5.5.

φ [rad] ∆` [m]
∣∣η̂′c,s − η̂c,s

∣∣ ∣∣η̂′c,s − η̂c,s (Ak = J2
k )
∣∣

0.4π 3.1 1.5% 2.6%
0.8π 3.1 2.2% 12.1%
0.4π 22.4 1.7% 2.6%
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Figure 5.5. The η̂′c,s (◦) for sinusoidal phase modulation at a depth of modulation of (a
& c) φ = 0.4π and (b) φ = 0.8π and at a path length difference of (a & b) ∆` = 3.1 m and
(c) 22.4 m. These results show Eq. (5.12) with the FP measured sideband amplitudes
(+) and Eq. (5.12) with Ak(φ, fm,s) = J2

k (φ) from theory (−).
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as previous work used ∆φ ≈ π [88] and produced a full sinc2 profile. This is much like

the sinusoidal modulation where increasing φ pushed more energy into the sidebands.

This led us to use a power spectral density, Gp, in the form of a summation of
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Figure 5.6. The average MO laser spectrum at 15 MHz PRBS phase modulation (−),
the standard deviation (−), the fit with Eq. (5.14) (−).

the unmodulated and PRBS modulated spectrums, viz.

Gp(ν) = L(ν) + Apsinc2

(
ν − ν0

∆νp

)
, (5.14)

where Ap is the sinc2 amplitude and ∆νp is the location of the sinc2 nulls, which are

ideally at fm,p. We fit Eq. (5.14) with a baseline to the observed spectra shown in

Fig. 5.6 for each fm,p. These FP measurements were noisier despite the averaging as

shown by the standard deviation of the scans in Fig. 5.6. The important fit results

are shown in Table 5.2, where the values were rounded to the next decimal up from
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the fit uncertainty (e.g., fit value = 0.86 with a fit uncertainty of 0.001). To quantify

the amount of MO laser energy that was linewidth broaden, we included the factor

β which is the ratio of the sinc2 area to the total area of the spectrum. We observed

that amount of the linewidth broadening slightly lessened with increasing fm,p and

∆νL was 100-200 kHz less than the measured, unmodulated MO laser linewidth. We

assumed this difference in the unmodulated MO laser linewidth was negligible since

it is less than the spectral resolution of the FP (i.e., ¡ 1 MHz). From the Fourier

transform of Eq. (5.14), we developed γp in the form of

γp(τ) = (1− β) exp(−π∆ντ) + β tri(τ∆νp), (5.15)

where γp is a sum of the unmodulated and PRBS modulated γ′s. As such as before,

our analytic model η̂c,p became

η̂c,p(τ) = [(1− β) + β tri(τ∆νp) exp(π∆νLτ)]2 , (5.16)

where tri is the triangle function. We assumed a ∆νL = 500 kHz consistent with the

FP manufacturer specification for the typical best spectral resolution of ¡700 kHz. We

also assumed ∆νL is same for the unmodulated and modulated measurements despite

the minor differences between the FP fits.

We measured η̂′c,p at four different optical path length differences ∆` = 3.1 m,

7.5 m, 14.9 m, and 22.4 m, which were estimated using the same sinusoidal phase

Table 5.2. Fit results of Eq. (5.14) on the MO laser spectrum with PRBS phase
modulation.

fm [MHz] AL ∆νL [MHz] Ap ∆νp [MHz] β
15 0.86 1.0 0.18 15.6 0.68
20 0.85 1.1 0.13 20.9 0.64
25 0.90 1.1 0.11 25.6 0.64
30 0.92 1.1 0.09 30.6 0.62
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modulation technique as before. The results are shown in Fig. 5.7. These measure-

ments were noisier than the sinusoidal phase modulation measurements. However,

the trends in the η̂′c,p agreed well with η̂c,p and the spectral measurements. The slopes

of the lines were well represented by the tri function in Eq. (5.16), where the average

absolute error was 1.4%. Each fm,p leveled out at ≈ (1 − β)2, which is beyond the

PRBS phase modulation coherence length, and that level increased slightly with fm,p,

which was seen in the FP spectrum measurements. The DH measured η̂c showed that

β was slightly greater than the FP measured value because the data points fall below

the line. However, the extrapolated β values from the data points using Eq. (5.15)

were within a few percent of the FP measured values. These differences led to average

absolute error of 6.9%, which was higher than the sinusoidal phase modulation.

This PRBS phase modulation of with ∆φ ≈ 0.6π at 15-30 MHz was representative

of rapid frequency fluctuations. Effectively, this broadened the MO laser spectrum

and shortens `c, since our ti captured the hologram over many phase fluctuation (i.e.,

ti > 1/fm,p). Therefore, rapid phase fluctuations would decrease `c and the effective

range of a practical DH system.

5.4.3 Sinusoidal with PRBS modulation

Lastly, we took measurements η̂′c,sp with PRBS modulation at fm,p = 30 MHz and

combined with sinusoidal modulation at fm,s = 20− 100 MHz. We initially expected

the two phase modulation effects to decrease η̂′c,sp more than the product of η̂′c,s and

η̂′c,p for low fm,s where the wings of the PRBS spectrum overlaps the sinusoidal phase

modulation sidebands. Then as fm,s increased, η̂′c,sp ≈ η̂′c,sη̂
′
c,p.

We show in Figure 5.8 the observed spectrum was decently approximated the

Gp(ν) substitution for L(ν) in Eq. (5.9) at fm,s =20 MHz and was better as fm,s

increased. The small amplitude difference in the broad pedestal between the two
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Figure 5.7. PRBS phase modulation results at various optical path length differ-
ences (∆`). The points represent the mean η̂′c,p, the error bars represent minimum and
maximum measurement, and the lines represent Eq. (5.16) from the FP fits.

lines at fm,s =20 MHz was believed to be due to the exclusion of the cross-terms in

Eq. (5.9). Otherwise, no correlation was observed between the two modulation types

and the MO laser spectrums aligned well with our expectations from the previous FP

measurements.

Figure 5.9 shows the results of η̂′c,sp at ∆` = 3.1 m. The product of η̂c,s and η̂c,p

aligned well with η̂′c,sp since the average absolute difference was 0.9%. Altogether,

this shows that the efficiency losses associated with multiple coherence effects are

multiplicative when there is no correlation between the coherence effects.
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5.5 Conclusion

In this paper, we quantified different coherence effects on the heterodyne energy

for DH in terms of a coherence efficiency ηc. We showed the quadratic relationship

between the magnitude of the complex degree of coherence γ and ηc. Then, we exper-

imentally measured the heterodyne energy losses using sinusoidal and PRBS phase

modulation to change the coherence properties of the single-mode MO laser. The

sinusoidal phase modulation produced sidebands on the MO center frequency, which

is representative of the multi-longitudinal mode laser. The results show the imprac-

ticality of a multi-longitudinal mode laser, where the SNR will fluctuate rapidly with

a moving object in tactical applications. The PRBS phase modulation produced a

partially broaden spectrum, which is representative of rapid fluctuations of the MO

laser’s frequency. For both modulation types, the DH η̂c measurements agreed well

with the predictions from the FP spectral measurements with an average absolute

error of 1.8% for sinusoidal and 6.8% for PRBS phase modulation. Such rapid phase

fluctuations decreases the `c and thus the effective range of a DH system in practice.

We also combined the sinusoidal and PRBS phase modulation to investigate the

total effect of two independent coherence effects. We observed no correlation between

the two phase modulation types and the resulting measured η̂c was well approximated

by the multiplication of the two independent coherence effects with an average abso-

lute error of 0.9%. These results also show DH is an effective technique to measure

laser coherence effects.
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Figure 5.8. The average MO laser spectrum (−) with PRBS phase modulation
fm,p =30 MHz and sinusoidal phase modulation with φ = 0.4π and fm,s = 20 MHz (a)
and 100 MHz (b). Also shown, Eq. (5.9) with Gp(ν) substituted for the Lorentzian
lineshape (−).
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Figure 5.9. The η̂′c,sp for the combination of PRBS phase modulation fm,p =30 MHz
and sinusoidal phase modulation with φ = 0.4π and fm,s = 20-100 MHz (◦). Also shown,
the product of η̂′c,s from Fig. 5.5(a) and η̂′c,p for fm,p = 30 MHz (+), and Eq. (5.12) with
Ak = J2

k (−) multiplied by Eq. (5.16) for ∆νp = fm,p =30 MHz.
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VI. Digital-holography mixing efficiency in the presence of
vibrations and flicker noise

The contents of this chapter is a draft for submission to the IEEE Journal of

Quantum Electronics [94].

This paper characterizes the mixing efficiency of digital holography, which is how

well the detected signal and reference interfere, with respect to the hologram integra-

tion time-dependence for vibration and coherence losses. We measured the mixing

efficiency of our DH system at various integration times and path length differences

between the signal and reference. We observed a 94% vibration efficiency for an in-

tegration time of 100 ms and minimized vibration effects with an efficiency of 100%

when the integration time ≤1 ms. We also observed the effective coherence length of

the master oscillator laser increased by 280% when the integration time was decreased

from 100 ms to 100µs. To model this outcome, we present a model of the coherence

efficiency based on the MO laser frequency noise. The model fit shows that the MO

laser frequency was flicker noise dominated. For both the vibration and coherence

efficiency, decreasing the integration time improves the efficiencies by acting as a

high-pass filter.

6.1 Introduction

Applications for digital holography (DH) are diverse with significantly different

system requirements. For near field applications, such as microscopy, the signal and

reference are nearly path-length matched and are not limited by the signal-to-noise

ratio (SNR). These applications can use laser sources with a short coherence length

[5, 95] or even incoherent light sources [96]. However, for applications like wavefront

sensing [20, 21, 39] and long-range imaging [79, 80, 17], the SNR and laser coherence

is a range limiting factor. Therefore, understanding the effects of laser coherence for
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DH is critical for these larger scale applications.

The mixing efficiency, which is how well the signal and reference interference

fringes are detected, is typically the dominate efficiency loss of a DH system. Our

previous experiments experimentally measured the mixing efficiency of a DH system

with a path-length matched signal for near-ideal coherence and reference and no ob-

served vibration effects [65]. Therefore, the mixing efficiency was only dependent on

the polarization efficiency, which was a 50% from the depolarized signal, and the pixel

modulation transfer function (MTF) loss from sampling the fringes, which was a 74%

efficiency for our camera. For tactical applications however, the mixing efficiency can

incur additional losses from vibrations and laser coherence over range.

Vibrations in a DH system causes the fringes to fluctuate across the camera pixels.

The source of the vibrations can be from a range of phenomenon such as platform

jitter, acoustic, etc. If the fringes fluctuate across the pixels over the course of the

camera integration time, then the vibrations smooth the fringes and reduces the fringe

visibility, which is proportional to the mixing efficiency. If the camera integration time

is shorter than the rate of the fringe fluctuations, then fringes are static over the in-

tegration time and the vibration losses can be negated.

The coherence efficiency is quadratically dependent on the complex-degree of co-

herence [78]. The coherence length is inversely proportional to the laser linewidth,

which provides a gauge for the distance when coherence losses become significant. The

phenomenon contributing the linewidth of diode lasers, which is a common source for

single-mode master oscillator (MO) lasers, has been studied [97]. The frequency and

phase noise from diode lasers, which determines the laser linewidth, has been well

studied [98, 99, 100]. Flicker noise (i.e., 1/f noise) in the laser frequency has been

observed as early as 1967 [101], which is due to the lifetimes of the charge carriers

[102], and has been studied [103, 104]. When laser frequency noise is dominated by
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flicker noise, the observed linewidth is integration time dependent [105, 106]. There-

fore, the laser frequency noise characteristics and ti should also be considered when

assessing the performance and capabilities of a DH system for long-range applications.

In what follows, we first provide our mixing efficiency model that characterizes

the independent effects as multiplicative efficiency losses. Then we give the details

on our DH experiment to measure our DH system’s mixing efficiency with respect to

ti and ∆`. Last, we present the analysis on the mixing efficiency measurements with

respect to our model.

6.2 Mixing efficiency model

As a reminder, ηm is a measure of how well the signal and reference light inter-

ference is detected. We define ηm here to be comprised of four other efficiencies as

described as

ηm(τ, ti) = ηpηsηv(ti)ηc(τ, ti), (6.1)

where τ is the time delay between the signal and reference, ti is the hologram or

pixel integration time, polarization efficiency ηp, spatial-fringe integration efficiency

ηs, vibration efficiency ηv, and coherence efficiency ηc.

For ηp, the object scatters the illumination and depolarizes the recieved signal.

For a dielectric material, like in our experiment, the signal is 100% depolarized. Since

the depolarized signal interferes with the polarized reference, we assume ηp = 50%

[67].

Additionally, we detect the fringes on discrete pixels, which smooths the detected

fringes and imparts an efficiency loss, ηs. This spatial integration of the fringes can

be mathematically described as the hologram irradiance convolved with the pixel.

The convolution turns into a multiplication of the Fourier transform of the hologram

irradiance with the pixel modulation transfer function (MTF) in the Fourier plane.
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For a square pixel, the pixel MTF is sinc. We estimate ηs by averaging the magnitude

squared of the pixel MTF over the pupil window in the Fourier plane. With an ideal

square pixel, ηs ≈ 64%, but the pixel MTF can differ with the rise of microlenses and

other novel FPA pixel designs (e.g., our previous results yielded an ηs ≈ 74% [65]).

Furthermore, the vibration efficiency ηv captures the losses from the blurring of

the fringes across the FPA pixels due to vibrations. If ti is faster than the vibrations,

then ηv ≈ 100% and the fringes are stable over ti. When vibrations occur during ti,

then ηv < 100%. This is empirically estimated in our experiment.

For ηc, several MO laser coherence phenomenon can degrade V such as power

fluctuations, center frequency mismatch, and phase fluctuations between the signal

and reference. Of the three phenomena, only the MO laser power and phase fluc-

tuations is dependent on the hologram integration time. However, evidence for MO

laser power fluctuations would have to be significant for this phenomenon to be the

dominate source for an integration time-dependent mixing efficiency measurements,

which lacks from the ensuing experimental measurements. Therefore, we turn to the

MO laser phase fluctuations, which is well documented as the dominate source for

integration time-dependent linewidth measurements [105].

To begin our model for ηc, we model the cw MO laser field, U(t), as

U(t) = Uo exp(j2πνt) exp(jφ(t)), (6.2)

where Uo is the amplitude, ν is the MO laser mean center frequency and φ(t) is the

random phase fluctuations. With Eq. (6.2), the MO laser is a quasi-monochromatic

light source with a linewidth due to φ(t) and constant amplitude. Next, we assume

that φ(t) is a zero mean Gaussian random process. Therefore, the random phase of

the signal light, φS(t1), and the reference light, φR(t2), are Gaussian, and so is the

relative difference ∆φ(t1, t2) = φS(t1) − φR(t2)[36]. We also assume φ(t) is at least
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stationary in first increments, so that ∆φ is only dependent on τ . As a result, the

mean 〈∆φ(τ)〉 = 0 and the variance, σ2
∆φ(τ), is

σ2
∆φ(τ) =

〈
(φS(t+ τ)− φR(t))2〉 . (6.3)

Next, the normalized complex-degree of coherence, γ(τ), which is a normalized cor-

relation, and V = |γ(τ)| when the amplitude of the signal and reference are equal.

We define γ(τ) in terms of the reference and signal as

γ(τ) =
〈U∗R(t)US(t+ τ)〉
〈UR(0)US(0)〉 , (6.4)

where UR is the reference complex-optical field, US is the signal complex-optical field,

and〈·〉 denotes expectation value. Then, we substitute Eq. (6.2) to represent the

reference and signal into Eq. (6.4), which yields [107]

γ(τ) = 〈exp [j∆φ(τ)]〉 = exp

[
−1

2
σ2

∆φ(τ)

]
. (6.5)

With this formulation in Eq. (6.2), we neglect effects due to MO laser amplitude

fluctuations on γ(τ), but these effects have been considered [105].

To model σ2
∆φ(τ), we use the PSD of the laser frequency noise, Gδν(f), [108], as

such

σ2
∆φ(τ) = 4π2τ 2

∞∫

0

Gδν(f) sinc2(fτ) df, (6.6)

where sinc(0) = 1 and sinc(x) = sin(πx)/(πx) when x 6= 0. We see in Eq. (6.6) that

even though the sinc2 acts a low-pass filter (f . 1/τ), σ2
∆φ increases quadratically

with τ . This quadratic relationship illustrates that as τ increases, φ(t) becomes more

uncorrelated and the fluctuations of ∆φ(t) increases for f . 1/τ . As an approxima-

tion, we model Gδν(f), as a linear combination of flicker and white noise [109], which
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is

Gδν(f) =
a

fα
+

∆νo
π
, (6.7)

where a is the magnitude of the flicker noise, α is the log-power slope of the flicker

noise (1 ≤ α ≤ 2), and ∆νo is the instantaneous linewidth due to white-phase noise

only. In the case when Gδν(f) is dominated by white-phase noise, the MO laser PSD,

G(ν), has a Lorentzian lineshape and the integral in Eq. (6.6) converges. However,

when Gδν(f) is dominated by flicker noise, G(ν) has a Gaussian lineshape and Eq.

(6.6) approaches infinity with a lower integration bound of zero. In reality, we have a

finite measurement time, which acts as high-pass filter and f . 1/ti is not captured

by the measured σ2
∆φ(τ, ti). Therefore, we add the high-pass filter to Eq. (6.6) [108]

and the measured σ2
∆φ becomes

σ2
∆φ(τ, ti) = 4π2τ 2

∞∫

0

Gδν(f) sinc2(fτ)
{

1− sinc2 [f (ti − τ)]
}
df, (6.8)

so the frequency range of interest for Gδν(f) is essentially 1/ti to 1/τ . Note that all

the approximations leading to and including Eq. (6.8) assumes ti > τ and ti > τc.

Since ηc = |γ|2 [78], we substitute Eq. (6.8) in Eq. (6.5) and our model for ηc

becomes

ηc(τ, ti) = exp


−4π2τ 2

∞∫

0

Gδν(f)sinc2 (πfτ)
{

1− sinc2 [f (ti − τ)]
}
df


 . (6.9)

While this description for Eq. (6.9) is adequate, other models may be possible. This

closed-form expression in Eq. (6.9) is used here to characterize the experimental

results due to MO laser frequency noise in our our DH system under test.
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6.3 Experimental methods

This section details the experimental setup and data processing used to measure

the mixing and coherence efficiency from the digital holograms. The experiment and

data processing is similar to the those used in Thornton, et. al., where additional

details maybe found [65, 78].

6.3.1 Experiment setup

The experimental setup is shown in Fig. 6.1. We used a cw, single-longitudinal

mode, Cobalt Samba diode-pumped solid-state laser as the MO laser. The Samba

provides 1W of power with a vendor specified linewidth <1 MHz and a coherence

length `c > 100 m. From previous work [78], we characterized the MO laser linewidth

as ∆ν < 500 kHz, which corresponds to a minimum `c > 260 m and a minimum

τc > 875 ns. To divert MO laser power, we used pairs of half-wave (λ/2) plates and

polarizing beam splitters (PBS) to adjust the total power to a beam dump (BD),

to create the local oscillator (LO), and to adjust the illuminator power to another

BD. The LO path was fiber coupled using another λ/2 to match the slow axis of the

polarization maintaining (PM) fiber. We steered the illuminator using mirrors (M)

and passed it through a beam expander (BE) to illuminate a sheet of Labsphere Spec-

tralon which has 99% Lambertian reflectivity. The reflected light was then imaged

onto a Grasshopper3 camera using a 1 in lens to create the signal light. The fiber-

coupled LO was injected at the pupil lens and centered onto the camera to create the

reference light.

With a 4 m LO fiber, the signal and reference paths were nearly matched to within

a few centimeters. The refractive index for the slow axis of the PM fiber was experi-

mentally determined to be ≈ 1.5 from previous work [78]. We inserted a combination

of 5 m, 10 m, 50 m, and 100 m length fiber to vary the optical path length, ∆`, for
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Figure 6.1. An illustration of the experimental setup

measurements at a ∆` = 0 m , 7.5 m, 15 m, 22.5 m, 50 m, 72.5 m, 150 m, 172.5 m,

225 m, and 247.5 m, which corresponds to a maximum τ = 825 ns. Additionally, we

collected data at integrations times, ti= 100 ms, 1 ms, and 100µs. For comparison, ti

was greater than two to five orders of magnitude of the maximum τ and the suspected

minimum τc.

For the collected data, we recorded a series of hologram, signal-only, and reference-

only frames. We preformed speckle averaging by rotating the Spectralon between each

speckle realization for a total of ten independent speckle realizations. Ten speckle re-

alizations was determined to be sufficient to reduce the speckle noise to about 5% [65].

For each speckle realization, we collected twenty holograms and twenty signal-only

frames for shot-noise averaging. Additionally, we collected twenty reference frames-

only frames between each speckle realization. In total, we collected 200 holograms,

signal-only, and reference-only frames at each ∆` and ti.
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6.3.2 Data processing

We measured the mixing efficiency ηm at each ∆` and ti. To measure ηm, we used

the 2D-Fast Fourier Transform (FFT) of each hologram and windowed the pupil in

the Fourier plane. This windowed pupil also contained noise, so we flipped the 2D-

FFT of the hologram and used the same pupil window to estimate the noise. Note

that by measuring the noise this way, we assume the noise is symmetric in the Fourier

plane over the window. Then, we subtracted the measured noise from the measured

windowed pupil. The average over the Fourier plane windowed pupil without noise

and over all frames was the average heterodyne energy EH . The average over all

frames for the signal-only and reference-only frames was mS and mR, respectively.

Lastly, we measured the mixing efficiency, η′m, using the following formula

η′m =
π

4q2
I

〈
EH (x, y)

〉

〈mS (x, y)mR (x, y)〉 , (6.10)

where 〈·〉 is the spatial average over all pixels and qI = 2.7 is the image plane sampling

quotient [23]. The π/4q2
I term in Eq. 6.10 is the ratio of the total number of pixels

to the number of pixels in the Fourier plane pupil window, since EH is averaged over

less pixels than mS and mR.

6.3.3 Measured MO laser frequency noise

We measured the MO laser’s center frequency over time with a HighFinesse WU-2

wavemeter, which has a measurement resolution of ≈2 MHz and samples at ≈20 Hz.

We took three datasets during the course of a day: dataset 1, which was minutes

after the laser was locked onto single-frequency operation; dataset 2, which was an

hour after dataset 1 completion; and dataset 3, which was minutes after dataset

2 completion. Figure 6.2(a) shows these laser frequency measurements, where the
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Figure 6.2. (a) MO laser center frequency measurements for dataset 1 (—), dataset 2
(—), and dataset 1 (—). (b) The power spectral density of each data set from (a) with
a fit of Eq. (6.11).
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mean of each dataset was subtracted from the each respective dataset to represent

the frequency fluctuations δν. In dataset 1 of Fig. 6.2(a), we observed the center

frequency rise on the order of 240 Hz/s for 30 minutes. Even though a difference in

center frequency between signal and reference light would decrease ηc and the loss

would increase over ∆`, the maximum frequency difference over the maximum ∆`

was less than 1 Hz. Therefore, this center frequency difference is negligible.

To further analyze the data, we calculated the PSD Gδν of each data set as shown

in Fig. 6.2(b). The PSD of each data set exhibited flicker noise. To quantify this

flicker noise, we fit the following equation

Gδν(f) = 10a/f−α, (6.11)

where a and α were the fit coefficients. The fit results of Eq. (6.11) are shown in Table

6.1, where the fit coefficients were rounded up from the fit uncertainty. We observed

that the magnitude and slope of the flicker noise was different between datasets. The

sampling frequency of the wavemeter was insignificant to obtain Gδν useful for our

range of measurements (1/ti − 1/τ = 10Hz −GHz). However, the δν measurements

indicated that our MO laser frequency noise was dominated by flicker noise.

Table 6.1. Flicker noise fit coefficients

Dataset 1 2 3
a 12.8 11.3 10.2
α 1.98 1.96 1.79

6.4 Experimental results and analysis

In this section, we analyze our experimental results in two steps. For the first

step, we show the η′m results to analyze the measurements. Then, for the second step,

we estimate η′c from the first step to compare to our model using Eq. (6.9).
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6.4.1 Mixing efficiency, η′m

Figure 6.3 shows the η′m results with error bars ± the standard deviation of the

measurement, ση′m . We fit each ti dataset to the following Gaussian function

η′m (∆`) = A exp


−

(
π∆νc

2
√

log(2)∆`

)2

 , (6.12)

where ∆ν is the observed laser linewidth and A is the relative amplitude. The mean

of the residuals was 0.3%. As a reminder from our model in Eq. 6.1 and 6.9, only

ηc is dependent on τ and ∆` and ηc(τ) = |γ(τ)|2. Eq. (6.12) represents |γ(τ)|2 for a

Gaussian lineshape of G(ν). We chose to fit a Gaussian function because the fit results

were much better than fitting to a decaying exponential function, where the mean of

the residuals was 1.0%. Note that a decaying exponential function corresponds to a

Lorentzian lineshape for G(ν) and Gδν(ν) is a constant [i.e. contains only white-phase

noise (cf. Eq. (6.7))]. This outcome indicates that our MO laser was flicker noise

dominated, as seen in the MO laser frequency measurements (cf. Section 6.3.3).

Table 6.2 shows the Eq. (6.12) fit results, where we rounded to the next digit

up from the fit coefficient uncertainty. ∆ν decreased by 65% when ti decreased from

100 ms to 100µs. This corresponded to τc increasing from 1.7µs to 4.6µs and `c

increasing from 500 m to 1.4 km, which is a 280% increase.

Additionally, we observed that A increased 2.5% from ti =100 ms to 1 ms and

100µs. Even though our DH system was on a floated optical table, we believe this

increase was due to some table or hardware vibrations. We believe the vibrations

were mostly filtered out at ti = 1 ms since the A’s are approximately the same for

ti = 1 ms and 100µs. Therefore, η′v = 94% for ti = 100 ms and η′v = 100% for

ti = 1 ms and 100µs. Additionally, the value of 37% for ti = 1 ms and 100µs agrees

with our previous measurements [65].Note that later representations of this data will
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Figure 6.3. The mixing efficiency measurements η′m (◦) with error bars ±σ and a
Gaussian fit (−) to the data.
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be divided by the fit coefficient A to represent η′c.

Additionally, we noticed a few features in Fig. 6.3. First, the dip in the datasets

at 7.5 m was apparent in all three datasets. This illustrates that the laser PSD is

probably not a smooth, symmetric Gaussian [110] and is not an experimental error.

Secondly, we observed that ση′m increased as ∆` increased. This was expected because

the random phase fluctuations become more uncorrelated as ∆` increases and the

measurement becomes noisier. Thirdly, a few data points deviated a few percentage

points from the Gaussian fit. We believe this is because the laser frequency noise

varied slightly over the course of all measurements.

Table 6.2. Gaussian fit coefficients

ti 100 ms 1 ms 100µs
A [%] 35 37 37

∆ν [kHz] 400 320 140

6.4.2 Coherence efficiency, η′c

The primary purpose to estimate and fit η′c using our ηc model [cf. Eq. (6.9)] was

to gain insight whether Gδν(f) was flicker noise dominated in all three ti datasets.

Obviously from Fig. 6.3, none of the data sets were white noise limited since a Gaus-

sian function fit the data much better than a decaying exponential. However, if we

were approaching the white noise limit (i.e., Gδν(f) was neither flicker nor white noise

dominant), then η′c lineshape would be a multiplication of a Gaussian and decaying

exponential given by the Voigt spectral lineshape [109]. Therefore, by using Eq. (6.9)

and including both flicker and white noise in Gδν(f) [cf.Eq. (6.7)], then the fits pro-

vide additional information. We estimated η′c by dividing η′m by A from Table 6.2.

Note that the difference between η′m and η′c is the y-intercept and not the shape. In

Figure 6.4, we show η′c with a fit of Eq. (6.9), where the mean of the fit residuals was

0.8%. We chose a and ∆νo to be the fit coefficients and α = 1.91, which is the mean
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Figure 6.4. η′c results (◦) with error bars ±σ and an independent fit for each ti using
Eq. (6.9) (−)

from Table 6.1, for Gδν(f). Note that we fixed the value for α because the fits were

over determined when α was a fit coefficient and the coefficient uncertainties were

unreasonable. The Gδν(f) fit variables are shown in Table 6.3.

From our results, ∆νo was minimized, which strongly indicates that our mea-

surements were dominated by flicker noise. This outcome corroborates the Gaussian

function fit of η′m in Fig. 6.3 and the MO laser frequency noise measurements in Sec-

tion 6.3.3. Therefore, we safely assumed that none of the measurements approached

the white noise floor of the MO laser and a further reduction in ti would decrease our

observed linewidth and increase the τc and `c.

Table 6.3. Frequency noise fit coefficients

ti 100 ms 1 ms 100µs
a 10.9 12.5 12.5

∆νo [kHz] 0.00 0.00 0.00
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6.5 Conclusion

In this paper, we presented a complete model for the mixing efficiency for DH to

account for vibrational and laser frequency noise effects. Our mixing efficiency model

is comprised of four independent efficiencies from different phenomenon: polarization

(50%), spatial-fringe integration (74%), vibrations, and coherence. We experimentally

measured the mixing efficiency at various optical path differences between the signal

and reference, and at different integration times. At zero path length difference

between the signal and reference, we observed the mixing efficiency decreased for

the longest integration time, which we attributed to vibrations (94%). When the

integration time was ≤ 1 ms, then the vibration efficiency was maximized (100%).

The measured mixing efficiency had a Gaussian shape with respect to the path

length difference and the observed linewidth decreased by 65% when the integration

time was decreased from 100 ms to 100µs. This correlated to increasing the effective

coherence length by 280%. These results indicated that the MO laser frequency noise

was dominated by flicker noise. We developed a model for the coherence efficiency,

which incorporates the effects of the laser frequency noise, and fit the model to the

estimated the coherence efficiency from the mixing efficiency measurements. The

results confirmed that the MO laser frequency noise was flicker noise dominated, not

approaching the white noise limit, and further reduction in the integration time would

increase coherence efficiency over range (i.e. increase the effective coherence length).

Overall, we show that the hologram integration time should be considered in the

design of the DH system. Decreasing the integration time reduces vibration losses

and increases the effective coherence length of the MO laser when the MO frequency

noise is dominated by flicker noise. These hologram integration time effects present

a trade space with respect to the vibration efficiency, coherence efficiency, and signal

strength for the performance of a DH system
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VII. Conclusions

This dissertation analyzed the system efficiencies (multiplicative losses) of a DH

system for tactical applications in four submitted or accepted publications. The per-

formance of DH in the on-axis phase shifting recording geometry was analyzed for

deep-turbulence wavefront sensing and compared to a similar, well studied wavefront

sensor, the self-referencing interferometer (SRI), with known efficiency losses. Closed-

form expressions for the SNR and field-estimate Strehl ratio were developed for three

phase shifting methods and deep-turbulence wave optics simulations with noise were

conducted. The closed-form expressions were < ±1% of the simulations with ideal

sampling and showed the 4-step method was the best. When the sampling was re-

duced, the simulations showed that a field-estimated Strehl ratio of 0.9 is achieved

when the mean signal photoelectron is ≥ 10 and > 5 pixels/r0. The SRI was modeled

and simulated in similar fashion. A comparison of the results show that DH outper-

forms the SRI by 10’s of dB due to DH’s strong reference beam.

To quantify the major DH system efficiencies, an experiment with DH in the off-

axis image plane recording geometry was conducted with a continuous-wave laser,

where the signal and reference paths were matched for ideal coherence. The experi-

mental results show that the mixing efficiency (37%) was the dominate efficiency loss

and was 4.6% higher than expected. The cause for the increase is that the FPA used

microlenses to achieve 100% pixel-fill factor, which would yield a slightly different

MTF than the square-pixel model that was used. Additionally, excess reference noise

(75%) was due to laser amplitude noise and a nonuniform reference, and excess signal

noise (3%-100%) was signal strength dependent and originates from the Fourier plane

window sampling a piece of the pupil autocorrelation. Both excess noise efficiencies

could be considered significant losses, but the excess signal noise only became sig-

nificant at measured SNRs > 100 and doesn’t degrade performance. The measured
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total-system efficiency was 21.1%, which was only 1.6% less than expected. These

experimental results showed that a DH system could approach the mixing-efficiency

limit if the other efficiencies are minimized.

The mixing efficiency includes the coherence efficiency of the master oscillator

(MO) laser, which degrades over range, so additional experiments were conducted

to explore the coherence effects of the MO laser. To do so, the MO laser was sinu-

soidally phase modulated to represent a multi-longitudinal mode MO laser, and was

pseudo-random bit sequence phase modulated to induce rapid frequency fluctuations

and line width broadening. The experimental results show that the DH effectively

the measures the MO laser coherence efficiency to within 3.2% from the spectral

models. When the two phase modulation schemes were combined, the results showed

that the measured coherency efficiency was within 0.9% of the multiplication of the

two independent coherence efficiencies since the two phase modulation types were

uncorrelated. These results show that DH can measure coherence effects accurately.

Conversely, the coherence efficiency can be estimated from the MO laser spectrum to

quantify DH performance as a function of range.

Furthermore, the mixing efficiency was fully characterized to incorporate integra-

tion time-dependent effects. Platform and hardware vibrations reduced the mixing

efficiency by 94%, but was filtered out when the integration time was faster than the

vibrations. If the MO laser has significant low frequency laser frequency noise (e.g.

1/f or flicker noise is common in diode lasers), then the coherence efficiency can be

increased over range. Essentially, the FPA integration time acts as a high-pass fil-

ter. Thus, by decreasing the hologram measurement time from 100 ms to 100µs, the

observed linewidth decreased from 400 kHz to 140 kHz and increased the coherence

length (i.e. effective range) by 186%.

Overall, the DH system built for the experiments is the most efficient system
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known to date. The quantification of the efficiencies presented provide a methodol-

ogy to characterize the performance of a DH system. The dominate efficiency loss,

the mixing efficiency, can also be well characterized to account for vibrational and

coherence effects, which can be a range limiting factor.

7.1 Recommendations for future work

The first recommendation is to explore the spatial sampling requirements for the

recording geometries of DH. Banet, et al. [62] and the work in Ch. III suggests that

4-5 pixels/r0 in the pupil plane is required to estimate the signal complex-optical

field adequately. Numerical simulations would be the easiest avenue to accomplish

this study; however laboratory experiments would be a nice addition for real-world

verification.

The second recommendation is to investigate another efficiency for Doppler com-

pensation. For tactical applications, the imaged object will have relative motion to

the DH system and the signal light’s center frequency will be Doppler shifted. These

losses are known in radar and can be modeled by the radar ambiguity function [111].

To minimize this loss, a separate control system would be utilized to shift the ref-

erence’s center frequency to match the signal’s center frequency and compensate for

the Doppler shift. However, experimental verification is needed to compare to the

hardware performance so it can be treated as another multiplicative efficiency loss,

which is not readily found in the literature.

The third recommendation is to investigate the efficiency losses incurred with a

pulsed DH system. The primary foreseen loss is the pulse overlap, which can also

be captured by the radar ambiguity function. However, other unforeseen losses (e.g.,

the pulse shape changing from pulse to pulse) could be possible and experimental

verification would be needed to compare to the hardware performance so the losses
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can be well understood, which is also not readily found in the literature.

The fourth recommendation is using DH to characterize optical turbulence. Since

DH can be used to estimate the phase along the optical path to resolve anisoplanatism

[16, 17], the C2
n and r0 can be calculated along the path from the estimated phase

screens. Also, with a well calibrated DH system and target, the extinction along the

path could be estimated in conjunction with the provided methodology in the second

contribution. Field tests would require truth data to quantify the precision of DH

to estimate these optical turbulence parameters. The last recommendation is to

continue investigation of the observed MO laser coherence. In the last experiment,

ti > τc and ti > τ , so the ensuing research would investigate the effects of ηc when

ti approaches and becomes less than τc with respect to range (τ). Both an analytic

treatment with experiments would facilitate a sound understanding.
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Appendix A. Special functions

Kronecker Delta Function

δ(x) =





1, x = 0

0, x 6= 0

(A.1)

Cardinal Sine Function1

sinc(x) =





1, x = 0

sin(πx)
πx

, x 6= 0

(A.2)

Circle Function2

circ(r) =





0, r > 0.5

.5, r = 0.5

1, r < 0.5

, (A.3)

Rectangle Function3

rect(x) =





0, |x| > 0.5

.5, |x| = 0.5

1, |x| < 0.5

(A.4)

Chat Function4

chat(r) =





2
π

[
arccos(r)− x

√
1− r2

]
, r ≤ 1

0, r > 1

(A.5)

Cauchy-Schwartz Inequality

∣∣∣
〈
U(x, y)Ũ∗((x, y)

〉∣∣∣
2

≤
〈
|U(x, y)|2

〉〈∣∣∣Ũ∗((x, y)
∣∣∣
2
〉
, (A.6)

1See [112] for more details.
2r =

√
x2 + y2

3Also known as Heaviside Pi.
4Result from the autocorrelation of the circ function. See [36] for more details
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Appendix B. Field-estimated Strehl ratio

The field-estimated Strehl ratio SF is a performance metric that allows us to

investigate the estimation accuracy of the various interferometric wavefront sensing

methods [46, 57, 20, 21]. In practice, SF results from the Cauchy-Schwartz Inequality,

such that

|〈U, V 〉|2 ≤ 〈U,U〉〈V, V 〉, (B.1)

where U and V are 2D arbitrary vectors in the field of complex numbers and 〈·, ·〉 is

the inner-product operator. By dividing both sides of Eq. B.1 by the right, we reach

the following inequality:

1 ≥ |〈U, V 〉|2
〈U,U〉〈V, V 〉 , (B.2)

which gives the properties of a Strehl ratio. This inequality ranges from 1, when

U = V , to 0, when U is orthogonal to V , and is proportional to the similarity

between the two complex vectors. However, the definition of SF uses expectation

values instead of inner products. The inner product for the complex vectors here is

〈U, V 〉 =

m,n∑

i,j=1

UijV
∗
ij , (B.3)

where m,n is the number of elements in the corresponding i, j dimensions and the

superscript ∗ denotes complex conjugate. We can ignore the customary transpose,

since we desire a point-by-point comparison, and linearize the 2D vectors to 1D space.

In this particular case, the expectation value is mathematically similar to the inner

product, such that

〈UV ∗〉 =
1

mn

m,n∑

i,j=1

UijV
∗
ij =

1

mn
〈U, V 〉. (B.4)

Here, the nuance between the inner-product operator 〈·, ·〉 and expectation-value

operator 〈·〉 is negligible in the calculation of SF , since the factor of 1/(mn)2 cancels
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in the numerator from the denominator. If we substitute the two complex vectors

U and V with ÛS for the truth complex-optical field and ÛS+N for the estimated

complex-optical field with noise, then SF becomes

SF =

∣∣∣
〈
ÛS(x, y)Û∗S+N(x, y)

〉∣∣∣
2

〈
|ÛS(x, y)|2

〉〈
|ÛS+N(x, y)|2

〉 . (B.5)

For all intents and purposes, we repeat Eq. B.5 above in Eq. 3.28.
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Appendix C. Field-estimated Strehl ratio as a function of
SNR

Rhoadarmer and Barchers [57] used the following relationship:

SF =
1

1 + 1
S/N

(C.1)

to write the field-estimated Strehl ratio SF as a function of the SNR S/N . Here,

we show how these two metrics are related in Eq. C.1. For this purpose, ÛS is the

estimated complex-optical field and ÛS+N is the estimated complex-optical field with

noise, such that

ÛS+N(x, y) = ÛS(x, y) +
σn√

2
Nk(x, y), (C.2)

where σn is the noise standard deviation and Nk is the kth realization of complex-

circular Gaussian random numbers with zero mean and unit variance. Note that the

factor of
√

2 in Eq. C.2 normalizes the variance since Nk has both real and imaginary

parts. In turn, the numerator of SF (cf. Eq. B.5) follows as

∣∣∣
〈
ÛS(x, y)Û∗S+N(x, y)

〉∣∣∣
2

=

∣∣∣∣
〈∣∣∣ÛS(x, y)

∣∣∣
2
〉∣∣∣∣

2

, (C.3)

since the additive-noise term has zero mean. Recall that |UR| � |US(x, y)|; thus,

we can assume that
∣∣∣ÛS(x, y)

∣∣∣ ≈
∣∣∣ÛS
∣∣∣ in writing Eq. C.3. The second term in

denominator of SF then follows as

〈∣∣∣ÛS+N(x, y)
∣∣∣
2
〉

=

〈∣∣∣ÛS(x, y)
∣∣∣
2
〉

+ σ2
n, (C.4)
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where the cross terms go to zero, since again the additive-noise term has zero mean.

Substituting Eqs. C.3 and C.4 into Eq. B.5, the new form of SF becomes

SF =

∣∣∣∣
〈∣∣∣ÛS(x, y)

∣∣∣
2
〉∣∣∣∣

2

〈∣∣∣ÛS(x, y)
∣∣∣
2
〉(〈∣∣∣ÛS(x, y)

∣∣∣
2
〉

+ σ2
n

) . (C.5)

Here, a factor of

〈∣∣∣Û(x, y)
∣∣∣
2
〉

in the numerator cancels the first term in denominator.

Thus, we arrive at the following relationship:

SF =
1

1 + σ2
n〈

|ÛS(x,y)|2
〉 , (C.6)

where it is apparent that the second term in the denominator is the inverse of the

SNR S/N , since

S/N =

〈∣∣∣ÛS(x, y)
∣∣∣
2
〉

σ2
n

. (C.7)

For all intents and purposes, we repeat Eq. C.7 above in Eq. 3.16.

131



www.manaraa.com

Appendix D. Previous efficiency experiment details

As summarized in Fig. D.1 and Table D.1, we carried out another experiment in

a similar fashion to the one presented in this paper. The main hardware differences

were a different vendor for the MO and FPA, but the majority of the specifications

for each were comparable. Additional details can be found in Thornton et al. [68].

Table D.1. Previous Experiment Details

Quantity Value Source
Bit Depth 8 N/A
σ2
r [pe2] 121 Vendor
ηq [%] 50 Vendor
` [pe] 7,700 Vendor
mB [pe] 3.3 Measured
mR [pe] 4,116 Measured
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Figure D.1. (a) The mean number of reference photoelectrons mR(x, y) and (b) mean
reference-noise energy ER(x, y) for the previously conducted experiment.

133



www.manaraa.com

Bibliography

1. J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-
reconstruction imaging through random media,” Appl. Phys. Lett., vol. 8, no. 12,
pp. 311–313, 1966.

2. J. W. Goodman and R. W. Lawrence, “Digital image formation from elecroni-
cally detected holograms,” Appl. Phys. Lett., vol. 11, no. 3, pp. 77–79, 1967.

3. J. D. Gaskill, “Imaging Through a Randomly Inhomogeneous Medium by Wave-
front Reconstruction,” J. Opt. Soc. Am. A, vol. 58, no. 5, pp. 600–608, 1968.

4. J. W. Goodman, D. W. Jackson, M. Lehmann, J. Knotts, and A. P. Profile,
“Experiments in Long-Distance Holographic Imagery,” Appl. Opt., vol. 8, no. 8,
pp. 1581–1586, 1969.

5. G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of a
lensless holographic imaging system,” Appl. Opt., vol. 41, no. 22, pp. 4489–4496,
2002.

6. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett.,
vol. 22, no. 16, pp. 1268–1270, 1997.

7. P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge,
“Time-domain optical coherence tomography with digital holographic mi-
croscopy,” Appl. Opt., vol. 44, no. 10, pp. 1806–1812, 2005.

8. D. Hillmann, C. Lührs, T. Bonin, P. Koch, and G. Hüttmann, “Holoscopy holo-
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